首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Lee N  Amy G  Croué JP  Buisson H 《Water research》2004,38(20):4511-4523
An understanding of natural organic matter (NOM) as a membrane foulant and the behavior of NOM components in low-pressure membrane fouling are needed to provide a basis for appropriate selection and operation of membrane technology for drinking water treatment. Fouling by NOM was investigated by employing several innovative chemical and morphological analyses.

Source (feed) waters with a high hydrophilic (HPI) fraction content of NOM resulted in significant flux decline. Macromolecules of a relatively hydrophilic character (e.g. polysaccharides) were effectively rejected by low-pressure membranes, suggesting that macromolecular compounds and/or colloidal organic matter in the hydrophilic NOM fraction may be a problematic foulant of low-pressure membranes. Moreover, the significant organic fouling that is contributed by polysaccharides and/or proteins in macromolecular and/or colloidal forms depends on molecular shape (structure) as well as size (i.e. molecular weight). More significant flux decline was observed in microfiltration (MF) compared to ultrafiltration (UF) membrane filtration. MF membrane fouling may be caused by pore blockage associated with large (macromolecular) hydrophilic molecules and/or organic colloids. In the case of UF membranes, the flux decline may be caused by sequential or simultaneous processes of surface (gel layer) coverage during filtration. Morphological analyses support the notion that membrane roughness may be considered as a more important factor in membrane fouling by controlling interaction between molecules and the membrane surface, compared to the hydrophobic/hydrophilic character of membranes. Membrane fouling mechanisms are not only a function of membrane type (MF versus UF) but also depend on source (feed) water characteristics.  相似文献   


2.
Huang H  Lee N  Young T  Gary A  Lozier JC  Jacangelo JG 《Water research》2007,41(17):3823-3832
Effects of natural organic matter (NOM) source and hydrodynamic conditions on both hydraulically reversible and irreversible fouling of low-pressure, hollow-fiber (LPHF) membranes were systematically investigated using representative sources of natural waters and wastewater effluents. It was found that NOM source plays a primary role in determining the fouling of these membranes. Increase in permeate flux promoted membrane fouling, but to a lesser extent than NOM source. Permeate backwash flux appeared to restore permeability more effectively for the polyether sulfone (PES) membranes than to the polyvinylidene fluoride (PVDF) membranes used. NOM characterization revealed that organic colloids contributed predominantly to the hydraulically reversible fouling, and potentially to the irreversible fouling. Overall, this study demonstrated the importance of NOM source and the presence of organic colloids in the fouling of LPHF membranes, as well as the relevance of hydrodynamic operating conditions on the hydraulic reversibility of the fouling.  相似文献   

3.
To help understand and predict the role of natural organic matter (NOM) in the fouling of low-pressure membranes, experiments were carried out with an apparatus that incorporates automatic backwashing and long filtration runs. Three hollow fibre membranes of varying character were included in the study, and the filtration of two different surface waters was compared. The hydrophilic membrane had greater flux recovery after backwashing than the hydrophobic membranes, but the efficiency of backwashing decreased at extended filtration times. NOM concentration of these waters (7.9 and 9.1mg/L) had little effect on the flux of the membranes at extended filtration times, as backwashing of the membrane restored the flux to similar values regardless of the NOM concentration. The solution pH also had little effect at extended filtration times. The backwashing efficiency of the hydrophilic membrane was dramatically different for the two waters, and the presence of colloid NOM alone could not explain these differences. It is proposed that colloidal NOM forms a filter cake on the surface of the membranes and that small molecular weight organics that have an adsorption peak at 220nm but not 254nm were responsible for "gluing" the colloids to the membrane surface. Alum coagulation improved membrane performance in all instances, and this was suggested to be because coagulation reduced the concentration of "glue" that holds the organic colloids to the membrane surface.  相似文献   

4.
Her N  Amy G  Park HR  Song M 《Water research》2004,38(6):1427-1438
Occasional algal blooms, comprised of blue-green algae and/or green algae, cause significant challenges in drinking water treatment due to the release of algogenic organic matter (AOM) into water extracellularly and, upon cell lysis, intracellularly. AOM has been extracted from blue-green algae (cyanobacteria) by various means and analyzed by UV absorbance scanning, HPSEC-UV-fluorescence-DOC, UV absorbance ratio index (URI), FTIR, and fluorescence excitation emission matrix (EEM). AOM extracted in water as a solvent exhibited a high hydrophilic fraction (57.3%) with a low SUVA (1.0 L/m-mg). The molecular weight (MW) distribution showed a significant heterogeneity (high value of polydispersivity) and high protein content (as indicated by specific fluorescence). Significant amounts of proteinaceous components such as mycosporine-like amino acids (MAAs, UV-screening components) and phycobilins (light-harvesting pigment) were detected by UV/visible absorption. The presence of proteins was confirmed by FTIR (at 1661 and 1552 cm(-1)), EEM spectra (EX:278-282 nm and EM:304-353 nm), and high URI values (3.1-6.0). A bench-scale cross-flow unit, employing a flat-sheet membrane specimen, was used to examine nanofiltration (NF) membrane fouling and removal of natural organic matter (NOM) derived from different blends of Suwannee River humic acid (SRHA) and AOM: SRHA 10 mgC/L, AOM 3mg C/L + SRHA 7 mgC/L, AOM 7 mgC/L + SRHA 3 mgC/L, and AOM 10 mgC/L. The study focused mainly on the effects of two different sources of organic matter on NF (NF 200) membrane fouling under otherwise similar conditions. Flux decline and organic matter rejection as a function of delivered DOC (cumulative mass of feed DOC per unit area) showed significantly different results depending on the organic matter composition of samples even though the test conditions were the same (organic matter concentration, pH, temperature, inorganic salt composition and concentration, and recovery). A higher flux decline was observed with increasing proportions of AOM. Organic matter rejections also decreased with higher AOM contributions to the samples, indicating that lower molecular weight (MW) AOM components were not well rejected by the NF 200 membrane having a 360 Da MWCO. However, SRHA that exhibited a relatively high MW (1000-5000 Da range) and high SUVA (7.4 L/m-mg) was preferentially rejected through electrostatic repulsion/size exclusion by the NF 200 membrane, having a high negative charge, low MWCO, and relatively low hydrophobicity. Even though the DOC concentration of feed water is a decisive factor for membrane fouling along with membrane properties and operating conditions, the characteristics of organic matter are more influential in fouling potential. Protein-like and polysaccharide-like substances were found as major foulants by FTIR.  相似文献   

5.
Assessing PAC contribution to the NOM fouling control in PAC/UF systems   总被引:3,自引:0,他引:3  
This paper investigates the powdered activated carbon (PAC) contribution to the fouling control by natural organic matter (NOM) in PAC/UF hybrid process, as well as the foulant behaviour of the PAC itself. Solutions of NOM surrogates (humic acids, AHA, and tannic acid, TA) and AOM/EOM (algogenic organic matter/extracellular organic matter) fractions from a Microcystis aeruginosa culture were permeated through an ultrafiltration (UF) hollow-fibre cellulose acetate membrane (100 kDa cut-off). The greatest impairment on flux and the poorest rejection were associated with polysaccharide-like EOM substances combined with mono and multivalent ions. PAC, either in the absence or in the presence of NOM, did not affect the permeate flux nor the reversible membrane fouling, regardless of the NOM characteristics (hydrophobicity and protein content) and water inorganics. However, PAC controlled the irreversible membrane fouling, minimising the chemical cleaning frequency. Furthermore, PAC enhanced AHA and TA rejections and the overall removal of AOM, although it was apparently ineffective for the highly hydrophilic EOM compounds.  相似文献   

6.
Natural organic matter (NOM) plays a significant role in fouling microfiltration membranes in drinking water treatment processes even though the NOM is retained only to a small extent. The aim of this study was to obtain a better understanding of the interactions between the fractional components of NOM and microfiltration membranes. Filtration experiments were performed using 0.22 μm hydrophobic and hydrophilic polyvinylidene fluoride (PVDF) membranes in a stirred-cell system on the NOM isolated from three Australian surface waters. As expected, the fouling rate for the hydrophobic membrane was considerably greater than for the hydrophilic membrane. Focusing on the hydrophobic membrane, it was shown that the high molecular weight fraction of NOM (>30 kDa) was responsible for the major flux decline. Filtration tests on the four fractions of NOM isolated on the basis of hydrophobicity and charge using non-functionalised and anionic resins revealed that the fouling potential for the three waters was hydrophilic neutral>hydrophobic acids>transphilic acids>hydrophilic charged. The low-aromatic hydrophilic neutral compounds were the main determinant of the rate and extent of flux decline. This was linked to the colloidal size fraction (>30 kDa) and to the selective concentration of calcium in the fraction leading to organics-Ca2+ bridging. It was also shown that the higher the aromaticity of the NOM the greater the flux decline, and the aromatics mainly resided in the hydrophobic acids fraction. Overall, the fouling mechanism controlling the flux decline involved the combined effects of adsorptive and colloidal fouling by the hydrophilic neutral fraction in the internal pore structure of the membrane.  相似文献   

7.
Lee H  Amy G  Cho J  Yoon Y  Moon SH  Kim IS 《Water research》2001,35(14):3301-3308
One of the most common problems encountered in water treatment applications of membranes is fouling. Natural organic matter (NOM) represents a particularly problematic foulant. Membranes may be fouled by relatively hydrophilic and/or hydrophobic NOM components, depending on NOM characteristics, membrane properties, and operating conditions. To maximize flux recovery for an NOM-fouled ultrafiltration membrane (NTR 7410), chemical cleaning and hydraulic rinsing with a relatively high cross-flow velocity were investigated as cleaning strategies. The modification of the membrane surface with either an anionic or a cationic surfactant was also evaluated to minimize membrane fouling and to enhance NOM rejection. Foulants from a hydrophobic NOM source (Orange County ground water (OC-GW)) were cleaned more effectively in terms of permeate flux by acid and caustic cleanings than foulants from a relatively hydrophilic NOM source (Horsetooth surface water (HT-SW)). An anionic surfactant (sodium dodecyl sulfate (SDS)) was not effective as a cleaning agent for foulants from either hydrophobic or hydrophilic NOM sources. High ionic strength cleaning with 0.1 M NaCl was comparatively effective in providing flux recovery for NOM-fouled membranes compared to other chemical cleaning agents. Increased cross-flow velocity and longer cleaning time influenced the efficiency of caustic cleaning, but not high ionic strength cleaning. The membrane was successfully modified only with the cationic surfactant; however, enhanced NOM rejection was accompanied by a significant flux reduction.  相似文献   

8.
A novel surface-modified polypropylene microfiltration membrane is investigated for its potential use in drinking water treatment. The flux decline rate of the modified membrane is substantially lower than the original polypropylene membrane for filtration of a soft, high-natural organic matter (NOM) surface water because a progressive adjustment in membrane permeability counteracts the flux decline due to fouling. In general, the prospects for reduced flux decline by membrane modification depend upon the characteristics of raw water such as hardness, particulate and NOM properties and concentration, and pretreatment strategies.  相似文献   

9.
Bose P  Reckhow DA 《Water research》2007,41(7):1516-1524
Natural organic matter (NOM) was extracted from a moderately colored, eutrophic surface water source (Forge Pond, Granby, MA), and fractionated into quasi-homogeneous fractions. Fulvic acid (FA) and hydrophilic neutrals (HN) were the two most abundant NOM fractions that were isolated. Adsorption affinity of the isolated NOM fractions on preformed aluminum hydroxide flocs increased with increase in specific organic charge of the fractions, except for the two most highly charged fractions, FA and hydrophilic acids (HAA), which showed less adsorption affinity than expected based on their specific organic charge. Prior ozonation of FA and HN fractions resulted in a decline and an increase, respectively, in their adsorption affinity on aluminum hydroxide surface. Prior ozonation of Forge Pond raw water resulted in a progressive decline in dissolved organic carbon (DOC) removal by alum coagulation with increase in ozone dose. It appeared that ozone applied to raw water reacted preferentially with the humic fraction of NOM, resulting in the detrimental effects of ozonation on subsequent NOM removal by alum coagulation being magnified. Forge Pond raw water was pre-coagulated to remove humic substances. Ozonation of the pre-coagulated water demonstrated the beneficial effects of ozonation on the removal of non-humic NOM through alum coagulation. A strategy for staged coagulation with intermediate ozonation was proposed for waters containing both humic and non-humic NOM for maximum DOC and specific UV absorbance at 254nm (SUVA) removal.  相似文献   

10.
A photocatalysis/microfiltration (MF) hybrid system, with the coating of a membrane using iron oxide particles (IOPs), was investigated with respect to natural organic matter (NOM) removal and membrane permeability during the treatment of various surface waters. A comparison of the performance between bare (uncoated) and IOP-coated membranes employed for the photocatalytic hybrid system was made. Due to the additional adsorption of NOM onto IOPs on the membrane surface, the IOP-coated membrane system always achieved greater DOC removal efficiencies during photocatalysis/MF. Particularly, the influence of colloidal particles that were present in different water sources with respect to membrane fouling was explored. Colloidal fouling occurred to both bare and IOP-coated membranes, but the interaction of colloids with IOP coating layers was in close association with the characteristics of colloids, such as size distribution, resulting in opposing fouling behaviors with varying water sources. The IOP-coated membrane was able to control fouling properly when a relatively large size of colloidal particles existed in raw water, but not for the case of small colloids. The IOP coat layer may become denser as small colloids penetrate into it, therefore leading to further fouling. The analysis of the hydraulic filtration resistances revealed that such fouling was virtually reversible in being removed by backwashing processes. Scanning electron microscopic observations, however, visualized the existence of several foulants remaining at the membrane surface after backwashing when feed water, containing a relatively large portion of small-sized colloids, was supplied.  相似文献   

11.
Natural organic matter (NOM) and trihalomethane formation potential (THMFP) removal were evaluated by ultrafiltration (UF) and nanofiltration (NF). Ten different raw water sources in Alicante province (SE Spain) were analysed. Five types of membranes of different materials were tested with a dead-end-type stirred UF cell. Additional measurements, such as dissolved organic carbon, ultraviolet absorbance (254nm), THMFP, ion concentration, pH, conductivity, etc. were made on raw water, permeates and concentrates. The SUVA value was used to determine the hydrophobicity of the water analysed. The elimination of NOM and THMFP is correlated with the molecular weight (MW) of NOM determined by size exclusion chromatography (SEC). The flux decline trends were correlated with cation concentration. NOM removal by UF is low, which correlates with the average MW determined by SEC with an average value of 922g/mol (between 833 and 1031g/mol). However, the NOM removal obtained with the NF90 and NF270 NF membranes for all water sources is almost complete (90%). THMFP removal is related to hydrophobicity and permeability of membrane. The NFT50 membrane removes almost 100% of the THMFP of more hydrophobic waters.  相似文献   

12.
Algogenic organic matter (AOM) can interfere with drinking water treatment processes and comprehensive characterisation of AOM will be informative with respect to treatability. This paper characterises the AOM originating from four algae species (Chlorella vulgaris, Microcystis aeruginosa, Asterionella formosa and Melosira sp.) using techniques including dissolved organic carbon (DOC), specific UV absorbance (SUVA), zeta potential, charge density, hydrophobicity, protein and carbohydrate content, molecular weight and fluorescence. All AOM was predominantly hydrophilic with a low SUVA. AOM had negative zeta potential values in the range pH 2-10. The stationary phase charge density of AOM from C. vulgaris was greatest at 3.2 meq g(-1) while that of M. aeruginosa and Melosira sp. was negligible. Lower charge density was related to higher hydrophobicity, while it was related in turn to increasing proteins >500 kDa:carbohydrate ratio. This demonstrates that AOM is of a very different character to natural organic matter (NOM).  相似文献   

13.
14.
Natural organic matter (NOM) from two sites in South Australia were separated by Amicon YM and YC ultrafiltration (UF) membranes into five nominal fractions (<0.5, 0.5-3, 3-10, 10-30 and >30 kDa). These nominal fractions were then characterized for size and molecular weight (MW) distributions using flow field-flow fractionation. The results show that separation by UF did not produce fractions with the expected MW and size. Electrophoretic mobility measurements of the NOM fractions adsorbed to colloidal goethite showed no significant difference between the fractions. However solid-state (13)C NMR of the NOM fractions showed that the separation was influenced by molecular structure as well as molecular size. The results suggest that great caution needs to be exercised when interpreting molecular size and speciation results for humic substances obtained by membrane UF.  相似文献   

15.
Zhao Y  Taylor J  Hong S 《Water research》2005,39(7):1233-1244
The impact of membrane surface characteristics and NOM on membrane performance has been investigated for varying pretreatment and membranes in a field study. Surface charge, hydrophobicity and roughness varied significantly among the four membranes used in the study. The membranes were tested in parallel following two different pretreatment processes, an enhanced Zenon ultrafiltration process (ZN) and a compact CSF process (Superpulsator (SP)) prior to RO membrane treatment for a total of eight integrated membrane systems. All membrane systems were exposed to the similar temperature, recovery and flux as well as chemical dosage. The membrane feed water qualities were statistically equivalent following ZN pretreatment and SP pretreatment except for NOM and SUVA. Membrane surface characteristics, NOM and SUVA measurements were used to describe mass transfer in a low-pressure RO integrated membrane system. Solute and water mass transfer coefficients (MTCs) were investigated for dependence on membrane surface properties and NOM mass loading. Inorganic MTCs were accurately described by a Gaussian distribution curve. Water productivity decreased with NOM loading and increased with contact angle and roughness. The negative effects of NOM loading on productivity were reduced as the negative charge on the membrane surface increased. Inorganic MTCs were also correlated to surface hydrophobicity and surface roughness. The permeability change of identical membranes was related to NOM loading, hydrophobicity and roughness. Organic fouling as measured by water, organic and inorganic mass transfer was less for membranes with higher hydrophilicity and roughness.  相似文献   

16.
Gwon EM  Yu MJ  Oh HK  Ylee YH 《Water research》2003,37(12):2989-2997
A pilot study had been performed for about 6 months in order to investigate the removal efficiency of dissolved matter and its fouling potential during nanofiltration (NF) and reverse osmosis (RO) of local groundwater that was pretreated with an ultrafiltration (UF) membrane system. After pilot plant operation, autopsy tests were performed to identify the characteristics of foulants that were attached to the membrane surface. In the autopsy tests, the flux recovery for each specific cleaning scheme (hydraulic washing, acid cleaning, and alkaline cleaning) was also measured using a dead-end filtration cell unit. The washing solution used in each chemical cleaning was analyzed to identify major components of the foulants, and the membrane surface was observed using the scanning electron microscopy (SEM).Among three kinds of membranes tested, one NF and two RO membranes, the NF and RO1 membranes showed a rapid flux decline after 100 days of operation. Especially, the RO1 membrane showed the more serious flux decline than the NF membrane. The RO2 membrane, with the lowest recovery rate, demonstrated a gradual flux decline. The removal efficiency of dissolved inorganic matter (as conductivity) for each NF, RO1 and RO2 membrane was 76.3%, 88.2% and 95.3%, respectively. The removal of dissolved organic matter (as total organic carbon) was found to be about 80% for both NF and RO membranes used in this study. During the membrane autopsy tests, five sections of the fouled membrane were cut along each NF and RO membrane module from the feed inlet side to the concentrate outlet side, the specific flux for each membrane section was measured before and after each cleaning step. As expected, the degree of fouling was intensified along the membrane surface as the feed flow approached the outlet. Based on the analysis results of wash water used in each cleaning step, the major foulants attached to the membrane surface appeared to be Ca bound with inorganic matter and Si bound with organic matter. Fe seemed to be a great contributor to irreversible fouling. The SEM analysis indicated that the organic matter was forming the first fouling layer close to the membrane and that the inorganic matter was layered top of the organic fouling layer in a tetragonal shape. Any evidence of biofouling was not observed in this study because most of microorganisms had been already removed by the UF pretreatment.  相似文献   

17.
Identification of nanofiltration membrane foulants   总被引:1,自引:0,他引:1  
Her N  Amy G  Plottu-Pecheux A  Yoon Y 《Water research》2007,41(17):3936-3947
The Mery-sur-Oise plant (France) has been using nanofiltration (NF) membranes (NF200) to produce safe drinking water since 1999. However, significant fouling has been occasionally observed according to seasonal conditions, even with various pre-treatments including conventional surface water treatment followed by ozonation, acid addition to pH 6.9, anti-scalant addition, and microfiltration (6mum). Pilot-scale filtration experiments were performed to determine the effects of natural organic matter (NOM) character and ozonation on NF membrane fouling under constant operating conditions. Two parallel pilot units were operated with sand-filtered water (SFW) and sand-filtered-ozonated water (SFOW) for 3-month periods corresponding to spring and fall seasons. To identify NF foulants, Fourier transform infrared spectroscopy, fluorescence excitation emission matrix, scanning electron microscope, energy-dispersive spectrophotometry, and HPSEC-UVA-DOC-fluorescence chromatography have been used. Even though the dissolved organic carbon (DOC) and ultraviolet (UVA) levels of spring samples were lower than those of winter season, these feed waters showed higher fouling presumably due to a higher hydrophilic fraction of NOM and the presence of microorganisms. In addition, for both seasons, ozonation increased the degree of fouling mainly by a change in NOM characteristics and by the promotion of bacterial cell growth conditions. The hydrophilic NOM is not expected to be easily rejected by the relatively hydrophilic and negatively charged NF200 membrane due to its non-charged (or oppositely charged) properties, indicating a high fouling potential by NOM associated with spring samples. The adhesion of bacteria and accumulation of microalgae on the membrane may be due to the role of extracellular biopolymers released by algae upon ozonation, promoting adhesion between microorganisms and the membrane surface. Protein- and polysaccharide-like substances were found as major foulants. The reason for the minor fouling by humic substances on membranes fed with SFOW during the spring season might be a loss of membrane surface charge due to screening by significant subsequent fouling on the base of the fouling layer of extracellular materials.  相似文献   

18.
Ultrafiltration (UF) fouling has been attributed to concentration polarization, gel layer formation as well as outer and inner membrane pore clogging. It is believed that mass of humic materials either retained on membrane surface or associated with membrane inner pore surface is the primary cause for permeate flux decline and filtration resistance build-up in water supply industries. While biofilm/biofouling and inorganic matter could also be contributing factors for permeability decline in wastewater treatment practices. The present study relates UF fouling to mass of dissolved organic matter (DOM) retained on membrane and quantifies the effect of retained DOM mass on filtration flux decline. The results demonstrate that larger pore membranes exhibit significant flux decline in comparison with the smaller ones. During a 24-h period, dissolved organic carbon mass retained in 10 kDa membranes was about 1.0 g m−2 and that in 100 kDa membranes was more than 3 times higher (3.6 g m−2). The accumulation of retained DOM mass significantly affects permeate flux. It is highly likely that some DOMs bind or aggregate together to form surface gel layer in the smaller 10 kDa UF system; those DOMs largely present in inner pore and serving as pore blockage on a loose membrane (100 kDa) are responsible for severe flux decline.  相似文献   

19.
Kim HC  Dempsey BA 《Water research》2012,46(11):3714-3722
Two fractionation strategies were compared for characterizing organic components in effluent organic matter (EfOM) and natural organic matter (NOM). The first method is widely used and requires sample acidification and then re-neutralization during sequential organic removals onto resins. The second method uses a different suite of separation methods, does not require pH manipulation, and sequentially removes particles, colloids, organic acids, and hydrophobic neutrals without the need for adjusting pH. The NOM samples were dominantly organic acids while EfOM contained a broader distribution of organic functionalities so further evaluation was focused on EfOM. The new method completely removed colloidal matter from EfOM while the conventional fractionation method resulted in an increase in the percentage of EfOM >100 kDa with each fractionation step after filtration. Organic acids were removed in one fractionation step using the new method instead of three steps with the conventional method. The conventional method resulted in increased fouling after the final separation step apparently caused by production of inorganic colloids. The new fractionation method provided a clearer diagnosis that organic acids were the primary cause of fouling even though they were only 14% of EfOM organic carbon. We suggest that the new fractionation method should be considered for diagnosing the effects of NOM or EfOM on the performance of membrane filtration.  相似文献   

20.
The aim of this study was to compare the coagulation and flotation of different algae species with varying morphology and algogenic organic matter (AOM) composition in order to link physical and chemical algae characteristics to treatment. Microcystis aeruginosa (cyanobacteria), Chlorella vulgaris (green algae), Asterionella formosa and Melosira sp. (diatoms) were treated by coagulation with aluminium sulphate and flotation. The AOM was extracted and treated separately. Analyses included cell counts, dissolved organic carbon, aluminium residual and zeta potential. Removal efficiencies in the range 94-99% were obtained for each species. Cells, AOM and aluminium were concurrently removed at a coagulant dose that was related on a log-log basis to both cell surface area and total charge density, although the relationship was much stronger for the latter. This was attributed to a significant proportion of the coagulant demand being generated by the AOM. The implications of such findings are that relatively simple charge measurements can be used to understand and control coagulation and flotation of algae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号