首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the most widely used multivariate control charts is the Hotelling T2. In order to construct a Hotelling T2 control chart, the mean vector (μ) and the variance–covariance matrix (Σ) must be first estimated. The classical estimators of μ and Σ are usually used to design Hotelling T2 control chart. The classical estimators are sensitive to the presence of outliers. One way to deal with outliers is to use robust estimators. In this study, a robust T2 control chart is proposed. The mean vector is obtained from the sample median. The median absolute deviation and the comedian are used as the estimates of the elements of the variance–covariance matrix. The proposed robust estimators of the mean vector and the variance–covariance matrix are compared with the sample mean vector and the sample variance–covariance matrix, and the M estimator of these parameters, through efficiency and robustness measures. The performances of the proposed robust T2 control chart and the classical and the M estimators are also compared by means of average run length. Simulation results reveal that the proposed robust T2 control chart has much better performance than the traditional Hotelling T2 and similar performance to the M estimator in detecting shifts in process mean vector. Use of other robust estimators to estimate the process parameters is an area for further research.  相似文献   

2.
Hotelling's T2 chart is a popular tool for monitoring statistical process control. However, this chart is sensitive in the presence of outliers. To alleviate the problem, this paper proposed alternative Hotelling's T2 charts for individual observations using robust location and scale matrix instead of the usual mean vector and the covariance matrix, respectively. The usual mean vector in the Hotelling T2 chart is replaced by the winsorized modified one‐step M‐estimator (MOM) whereas the usual covariance matrix is replaced by the winsorized covariance matrix. MOM empirically trims the data based on the shape of the data distribution. This study also investigated on the different trimming criteria used in MOM. Two robust scale estimators with highest breakdown point, namely Sn and Tn were selected to suit the criteria. The upper control limits for the proposed robust charts were calculated based on simulated data. The performance of each control chart is based on the false alarm and the probability of outlier's detection. In general, the performance of an alternative robust Hotelling's T2 charts is better than the performance of the traditional Hotelling's T2 chart. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Use of Hotelling's T2 charts with high breakdown robust estimates to monitor multivariate individual observations are the recent trend in the control chart methodology. Vargas (J. Qual. Tech. 2003; 35: 367‐376) introduced Hotelling's T2 charts based on the minimum volume ellipsoid (MVE) and the minimum covariance determinant (MCD) estimates to identify outliers in Phase I data. Studies carried out by Jensen et al. (Qual. Rel. Eng. Int. 2007; 23: 615‐629) indicated that the performance of these charts heavily depends on the sample size, amount of outliers and the dimensionality of the Phase I data. Chenouri et al. (J. Qual. Tech. 2009; 41: 259‐271) recently proposed robust Hotelling's T2 control charts for monitoring Phase II data based on the reweighted MCD (RMCD) estimates of the mean vector and covariance matrix from Phase I. They showed that Phase II RMCD charts have better performance compared with Phase II standard Hotelling's T2 charts based on outlier free Phase I data, where the outlier free Phase I data were obtained by applying MCD and MVE T2 charts to historical data. Reweighted MVE (RMVE) and S‐estimators are two competitors of the RMCD estimators and it is a natural question whether the performance of Phase II Hotelling's T2 charts with RMCD and RMVE estimates exhibits similar pattern observed by Jensen et al. (Qual. Rel. Eng. Int. 2007; 23: 615‐629) in the case of MCD and MVE‐based Phase I Hotelling's T2 charts. In this paper, we conduct a comparative study to assess the performance of Hotelling's T2 charts with RMCD, RMVE and S‐estimators using large number of Monte Carlo simulations by considering different data scenarios. Our results are generally in favor of the RMCD‐based charts irrespective of sample size, outliers and dimensionality of Phase I data. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
One of the basic assumptions for traditional univariate and multivariate control charts is that the data are independent in time. For the latter, in many cases, the data are serially dependent (autocorrelated) and cross‐correlated because of, for example, frequent sampling and process dynamics. It is well known that the autocorrelation affects the false alarm rate and the shift‐detection ability of the traditional univariate control charts. However, how the false alarm rate and the shift‐detection ability of the Hotelling T2 control chart are affected by various autocorrelation and cross‐correlation structures for different magnitudes of shifts in the process mean is not fully explored in the literature. In this article, the performance of the Hotelling T2 control chart for different shift sizes and various autocorrelation and cross‐correlation structures are compared based on the average run length using simulated data. Three different approaches in constructing the Hotelling T2 chart are studied for two different estimates of the covariance matrix: (i) ignoring the autocorrelation and using the raw data with theoretical upper control limits; (ii) ignoring the autocorrelation and using the raw data with adjusted control limits calculated through Monte Carlo simulations; and (iii) constructing the control chart for the residuals from a multivariate time series model fitted to the raw data. To limit the complexity, we use a first‐order vector autoregressive process and focus mainly on bivariate data. © 2014 The Authors. Quality and Reliability Engineering International Published by John Wiley & Sons Ltd.  相似文献   

5.
In this paper, we consider the conditional performance of the equal‐tailed and average run lengths (ARL)‐unbiased two‐sided S2 charts when the in‐control variance of a normal process is estimated. We derive the exact probability distributions of the conditional ARL for the two S2 charts. Then we evaluate the performance of each S2 chart in terms of the percentiles, mean and standard deviation of the conditional in‐control ARL distribution. Because the parameter estimation seriously affects the conditional performance of these S2 charts, we propose an exact method to design the equal‐tailed and ARL‐unbiased S2 charts with desired conditional in‐control performance. The results indicate that the new ARL‐unbiased S2 chart has far smaller standard deviation ARL values and the unconditional ARL values are more close to the desired value than the corresponding new equal‐tailed S2 chart. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
A multivariate extension of the exponentially weighted moving average (EWMA) control chart is presented, and guidelines given for designing this easy-to-implement multivariate procedure. A comparison shows that the average run length (ARL) performance of this chart is similar to that of multivariate cumulative sum (CUSUM) control charts in detecting a shift in the mean vector of a multivariate normal distribution. As with the Hotelling's χ2 and multivariate CUSUM charts, the ARL performance of the multivariate EWMA chart depends on the underlying mean vector and covariance matrix only through the value of the noncentrality parameter. Worst-case scenarios show that Hotelling's χ2 charts should always be used in conjunction with multivariate CUSUM and EWMA charts to avoid potential inertia problems. Examples are given to illustrate the use of the proposed procedure.  相似文献   

7.
The average run length (ARL) is usually used as a sole measure of performance of a multivariate control chart. The Hotelling's T2, multivariate exponentially weighted moving average (MEWMA) and multivariate cumulative sum (MCUSUM) charts are commonly optimally designed based on the ARL. Similar to the case of univariate quality control, in multivariate quality control, the shape of the run length distribution changes in accordance to the magnitude of the shift in the mean vector, from highly skewed when the process is in‐control to nearly symmetric for large shifts. Because the shape of the run length distribution changes with the magnitude of the shift in the mean vector, the median run length (MRL) provides additional and more meaningful information about the in‐control and out‐of‐control performances of multivariate charts, not given by the ARL. This paper provides a procedure for optimal designs of the multivariate synthetic T2 chart for the process mean, based on MRL, for both the zero and steady‐state modes. Two Mathematica programs, each for the zero state and steady‐state modes are given for a quick computation of the optimal parameters of the synthetic T2 chart, designed based on MRL. These optimal parameters are provided in the paper, for the bivariate case with sample sizes, nin{4, 7, 10}. The MRL performances of the synthetic T2, MEWMA and Hotelling's T2 charts are also compared. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Phase I outliers, unless screened during process parameter estimation, are known to deteriorate Phase II performance of process control charts. Reweighting estimators, ie, trimming outlier subgroups and individual observations, were suggested in the literature to improve both the robustness and efficiency of the resulting parameter estimates. In the current study, effects of various reweighted estimators at different trimming levels on the Phase II performance of S‐charts are elucidated using computer simulations including isolated and mixtures of contamination models. Outlier magnitudes in the simulations are held at a moderately low level to mimic industrial practice. Subtleties, such as varying Type I error rate among different trimming levels with respect to quantiles of dispersion estimates, prevent a single method to be revealed as the best performing one under all circumstances, and choice of estimators and trimming levels should depend on the number of subgroups in Phase I and the specifics of the process. Nevertheless, S‐chart using scale M‐estimator with logistic ρ and location M‐estimator at 2% trimming generally stands out in terms of Phase II performance, and high trimming levels are particularly recommended for high number of Phase I subgroups.  相似文献   

9.
The in-control performance of Shewhart and S2 control charts with estimated in-control parameters has been evaluated by a number of authors. Results indicate that an unrealistically large amount of Phase I data is needed to have the desired in-control average run length (ARL) value in Phase II. To overcome this problem, it has been recommended that the control limits be adjusted based on a bootstrap method to guarantee that the in-control ARL is at least a specified value with a certain specified probability. In this article we present simple formulas using the assumption of normality to compute the control limits and therefore, users do not have to use the bootstrap method. The advantage of our proposed method is in its simplicity for users; additionally, the control chart constants do not depend on the Phase I sample data.  相似文献   

10.
The performance of attribute control charts that monitor Markov‐dependent data is usually evaluated under the assumption of known process parameters, that is, known values of a the probability an item is nonconforming given the previous item is conforming and b the probability an item is conforming given the previous item is nonconforming. In practice, these parameters are usually not known and are calculated from an in‐control Phase I‐data set. In this paper, a comparison of the in‐control ARL (average run length) properties of the attribute chart for Markov‐dependent data with known and estimated parameters is presented. The probability distribution of the estimators is developed and used to calculate the in‐control ARL and standard deviation of the run length of the chart with estimated parameters. For particular values of a and b, the in‐control ARL values of the charts with estimated parameters may be very different than those with known parameters. The size of the Phase‐I data set needed for charts with estimated parameters to exhibit the same in‐control ARL properties as those with known parameters may vary widely depending on the parameters of the process, but in general, large samples are needed to obtain accurate estimates. As the Phase‐I sample size increases, the in‐control ARL values of the charts with estimated parameters approach that of the known parameter case but not in a monotonic fashion as in the case of the X‐bar chart. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Multivariate monitoring techniques for serially correlated observations have been widely used in various applications. This study examines several issues that have arisen in relation to the statistical quality control for the vector autoregressive (VAR) model, using a Monte Carlo approach. Different versions of the Hotelling T2 statistic and control limits to monitor the VAR‐type process for both Phase I and Phase II schemes can be specified for different sample sizes and configurations of the model. Our simulation study suggests that the Hotelling's T2 statistic can be tested against the χ2 critical values during Phase I, but should be tested against scaled F critical values during Phase II. An unbiased covariance estimate of residuals is also recommended during Phase II when sample size is typically small. By reanalyzing some real data examples, the authors offer new conclusions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
The S2 chart has been known as a powerful tool to monitor the variability of the normal process. When the variance of the process is unknown, it needs to be estimated by Phase I samples. It is well known that there are serious effects of parameter estimation on the performance of the S2 chart based on known parameter assumption. If the effects of parameter estimation are not considered, it can lead to an increase in the number of false alarms and a reduction in the ability of the chart to detect process changes except for very small shifts in the variance. Based on the criterion of average run length (ARL) unbiased, a S2 control chart is developed when the in‐control variance is estimated. The performance of the proposed control chart is also evaluated in terms of the ARL and standard deviation of the run length. Finally, an example is used to illustrate the proposed control chart. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
The effect of the methods for handling missing values on the performance of Phase I multivariate control charts has not been investigated. In this paper, we discuss the effect of four imputation methods: mean substitution, regression, stochastic regression and the expectation maximization algorithm. Estimates of mean vector and variance covariance matrix from the treated data set are used to estimate the unknown parameters in the Hotelling's T2 chart statistic. Based on a Monte Carlo simulation study, the performance of each of the four methods is investigated in terms of its ability to obtain the nominal in‐control and out‐of‐control overall probability of a signal. We consider three sample sizes, five levels of the percentage of missing values and three types of variable numbers. Our simulation results show that the stochastic regression method has the best overall performance among all the competing methods. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Most multivariate control charts in the literature are designed to detect either mean or variation shifts rather than both. A simultaneous use of the Hotelling T 2 and |S| control charts has been proposed but the Hotelling T 2 reacts to mean shifts, dispersion changes, and changes of correlations among responses. The combination of two multivariate control charts into one chart sometimes loses the ability to provide detailed diagnostic information when a process is out-of-control. In this research a new multivariate control chart procedure based on exponentially weighted moving average (EWMA) statistics is proposed to monitor process mean and variance simultaneously to identify proper sources of variations. Two multivariate EWMA control charts using individual observations are proposed to achieve a quick detection of mean or variance shifts or both. Simulation studies show that the proposed charts are capable of identifying appropriate types of shifts in terms of correct detection percentages. A manufacturing example is used to demonstrate how the proposed charts can be properly set-up based on average run length values via simulations. In addition, correct detection rates of the proposed charts are explored.  相似文献   

15.
To measure the statistical performance of a control chart in Phase I applications, the in‐control average run length (ARL) is the most frequently used parameter. In typical start up situations, control limits must be computed without knowledge of the underlying distribution of the quality characteristic. Assumptions of an underlying normal distribution can increase the probability of false alarms when the underlying distribution is non‐normal, which can lead to unnecessary process adjustments. In this paper, a control chart based on a kernel estimator of the quantile function is proposed. Monte Carlo simulation was used to evaluate the in‐control ARL performance of this chart relative to that of the Shewhart individuals control chart. The results indicate that the proposed chart is more robust to deviations in the assumed underlying distribution (with respect to the in‐control ARL) and results in an alternative method of designing control charts for individual units. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, we proposed a new bivariate control chart denoted by based on the robust estimation as an alternative to the Hotelling's T2 control chart. The location vector and the variance‐covariance matrix for the new control chart are obtained using the sample median, the median absolute deviation from the sample median, and the comedian estimator. The performance of the proposed method in detecting outliers is evaluated and compared with the Hotelling's T2 method using a Monte‐Carlo simulation study. A numerical example is considered to illustrate the application of the proposed method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, we propose four control charts for simultaneous monitoring of mean vector and covariance matrix in multivariate multiple linear regression profiles in Phase II. The proposed control charts include sum of squares exponential weighted moving average (SS‐EWMA) and sum of squares cumulative sum (SS‐CUSUM) for monitoring regression parameters and corresponding covariance matrix and SS‐EWMARe and SS‐CUSUMRe control charts for monitoring mean vector and covariance matrix of residual. Proposed methods are able to identify the out‐of‐control parameter responsible for shift. The performance of the proposed control charts is compared with existing method through Monte‐Carlo simulations. Moreover, the diagnostic performance of the proposed control charts is evaluated through simulation studies. The results show better performance of the proposed control charts rather than competing control chart. Finally, the applicability of the proposed control charts is illustrated using a real case of calibration application in the automotive industry. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Some quality control schemes have been developed when several related quality characteristics are to be monitored: simultaneous X¯ charts, Hotelling's T2 chart, multivariate CUSUM and multivariate EWMA. Hotelling's T2 control chart has the advantage of its simplicity but it is slow in detecting small process shifts. The latest developments in variable sample sizes for univariate control charts are applied in this paper to define an adaptive sample sizes T2 control chart. As occurs in the univariate case the ARL improvements are very important particularly for small process shifts. An example is given to illustrate the use of the proposed scheme.  相似文献   

19.
Very recently, control charts for monitoring the ratio of 2 normal variables have been investigated in statistical process control. In the two‐sided case, however, these control charts tend to be average run length (ARL) biased, in the sense that some out‐of‐control ARL values are larger than the in‐control ARL. This paper proposes an ARL‐unbiased EWMA control chart for monitoring of this kind of ratio with each subgroup consisting of n?1 sample units. Also, to study the long‐term properties of ARL‐unbiased EWMA‐RZ control chart, we investigate the steady‐state ARL. Several tables and figures are given to show the statistical properties of the proposed control charts. The comparison results show that the proposed ARL‐unbiased chart outperforms other two‐sided control charts in terms of the zero‐state and steady‐state ARL. An example illustrates the use of this chart on a real quality control problem from the food industry.  相似文献   

20.
In this article, we propose an exponentially weighted moving average (EWMA) control chart for monitoring the covariance matrix of a multivariate process based on the dissimilarity index of 2 matrices. The proposed control chart essentially monitors the covariance matrix by comparing the individual eigenvalues of the estimated EWMA covariance matrix with those of the estimated covariance matrix from the in‐control (IC) phase I data. It is different from the conventional EWMA charts for monitoring the covariance matrix, which are either based on comparing the sum or product or both of the eigenvalues of the estimated EWMA covariance matrix with those of the IC covariance matrix. We compare the performance of the proposed chart with that of the best existing chart under the multivariate normal process. Furthermore, to prevent the control limit of the proposed EWMA chart developed using the limited IC phase I data from having extensively excessive false alarms, we use a bootstrap resampling method to adjust the control limit to guarantee that the proposed chart has the actual IC ARL(average run length) not less than the nominal level with a certain probability. Finally, we use an example to demonstrate the applicability and implementation of the proposed EWMA chart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号