首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The standard deviation chart (S chart) is used to monitor process variability. This paper proposes an upper‐sided improved variable sample size and sampling interval (VSSIt) S chart by improving the existing upper‐sided variable sample size and sampling interval (VSSI) S chart through the inclusion of an additional sampling interval. The optimal designs of the VSSIt S chart together with the competing charts under consideration, such as the VSSI S and exponentially weighted moving average (EWMA) S charts, by minimizing the out‐of‐control average time to signal (ATS1) and expected average time to signal (EATS1) criteria, are performed using the MATLAB programs. The performances of the standard S, VSSI S, EWMA S, and VSSIt S charts are compared, in terms of the ATS1 and EATS1 criteria, where the results show that the VSSIt S chart surpasses the other charts in detecting moderate and large shifts, while the EWMA S is the best performing chart in detecting small shifts. An illustrative example is given to explain the implementation of the VSSIt S chart.  相似文献   

2.
The use of runs rules is proposed for switching between the sampling interval lengths of variable sampling interval Hotelling's T2 charts. The purpose of applying these rules is to reduce the frequency of the switches which causes inconvenience in the administration of the charts. The expressions for the performance measures for the charts with these rules are derived. The effects of different runs rules on the performances are evaluated through numerical comparisons. The runs rules substantially reduce the frequency of switches during the in‐control period and during the out‐of‐control periods due to the small to moderate shifts in the process mean vector. They also fairly improve the statistical performances of the charts in detecting the small shifts and do not affect that in detecting the large shifts. However, some runs rules slightly worsen the statistical performances in detecting the moderate shifts. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
The VSI chart has been investigated by many researchers under the assumption of known process parameters. However, in practice, these parameters are usually unknown and it is necessary to estimate them from the past data. In this paper, we evaluate and compare the performance of the VSI chart in terms of its average time to signal in the case where the process parameters are known and in the case where these parameters are estimated. We also provide new chart constants taking into account the number of phase I samples. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Monitoring the coefficient of variation (CV) allows process monitoring to be performed when both the process mean and the standard deviation are not constant but, nevertheless, proportional. Until now, few research papers have investigated the monitoring of the CV in a short production run context. This paper investigates the design and implementation of a Variable Sampling Interval Shewhart control chart to monitor the coefficient of variation in a short production run context. Formulas for the truncated average time to signal are derived and a performance comparison is carried out with a Fixed Sampling Rate Shewhart chart monitoring the CV. An example illustrates the use of this chart on real industrial data.  相似文献   

5.
An efficient process monitoring system is important for achieving sustainable manufacturing. The control charting technique is one of the most effective techniques to monitor process quality. In certain processes where the process mean and variance are not independent of one another, the coefficient of variation (CV), which measures the ratio of the standard deviation to the mean, should be monitored. In line with industrial settings, where at least two or more variables are monitored simultaneously in most processes, this paper proposes a variable parameter (VP) chart to monitor the multivariate CV (MCV). Formulae and algorithms to optimize the various performance measures are discussed. The proposed VP MCV chart is designed based on a Markov chain approach. The performance comparison shows that the proposed VP MCV chart prevails over the existing MCV charts, in terms of the average time to signal (ATS), standard deviation of the time of signal (SDTS), and expected average time to signal (EATS) criteria. An example is presented to illustrate the implementation of the proposed VP MCV chart.  相似文献   

6.
The AEWMA control chart is an adaptive EWMA (exponentially weighted moving average) type chart that combines the Shewhart and the classical EWMA schemes in a smooth way. To improve the detection performance of the FSI (fixed sampling interval) AEWMA control chart 7 in terms of the ATS(average time to signal), this paper proposes a new VSI (variable sampling interval) AEWMA control chart. A Markov chain approach is used to calculate the ATS values of the new VSI AEWMA control chart, and comparative results show that the proposed control chart performs better than the standard FSI AEWMA control chart and than other VSI control charts over a wide range of shifts.  相似文献   

7.
Control charts are widely used for process monitoring and quality control in manufacturing industries. Implementing variable sampling interval (VSI) control schemes on control charts rather than traditional fixed sampling interval procedure can significantly improve the control chart's efficiency. In this paper, the VSI run sum (RS) Hotelling's χ2 chart is proposed. The optimal scores and parameters of the proposed chart are determined using an optimization technique to minimize the following: (i) out‐of‐control average time to signal (ATS); (ii) adjusted ATS (AATS), when the exact shift size can be specified; (iii) expected ATS; or (iv) expected AATS, when the exact shift size cannot be specified. The Markov chain method is used to evaluate the zero‐state ATS and expected ATS, and steady‐state AATS and expected AATS of the proposed chart. The results show that the VSI RS Hotelling's χ2 chart significantly outperforms the standard RS Hotelling's χ2 chart and the former also performs well compared with other competing charts. By adding more scoring regions, the efficiency of the VSI RS Hotelling's χ2 chart can be further enhanced. An illustrative example using data from a manufacturing process is presented to demonstrate the application of the VSI RS Hotelling's χ2 chart. The application of the proposed chart in a quality improvement program can be extended to management and service industries. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
This article is the first of its kind which proposes a Variable Parameters (VP) chart to monitor the coefficient of variation (CV). Formulae for various performance measures and the algorithms to optimize these performance measures are proposed. The VP CV chart consistently outperforms the five alternative CV charts in the literature, for all shift sizes. Compared to the Exponentially Weighted Moving Average (EWMA) CV2 chart, the VP CV chart outperforms it for moderate and large shift sizes, while for small shift sizes, the EWMA CV2 chart outperforms the VP CV chart. Subsequently, the VP CV chart is implemented on an industrial example.  相似文献   

9.
Recent research has shown that the adaptive control charts are quicker than the traditional static charts in detecting process shifts. This paper develops the algorithm for the optimization designs of the adaptive np control charts for monitoring the process fraction non‐conforming p. It includes the variable sample size chart, the variable sampling interval chart, and the variable sample size and sampling interval chart. The performance of the adaptive np charts is measured by the average time to signal under the steady‐state mode, which allows the shift in p to occur at any time, even during the sampling inspection. By studying the performance of the adaptive np charts systematically, it is found that they do improve effectiveness significantly, especially for detecting small or moderate process shifts. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
Sequential probability ratio test (SPRT) control charts are shown to be able to detect most shifts in the mean or proportion substantially faster than conventional charts such as CUSUM charts. However, they are limited in applications because of the absence of the upper bound on the sample size and possibly large sample numbers during implementation. The double SPRT (2‐SPRT) control chart, which applies a 2‐SPRT at each sampling point, is proposed in this paper to solve some of the limitations of SPRT charts. Approximate performance measures of the 2‐SPRT control chart are obtained by the backward method with the Gaussian quadrature in a computer program. On the basis of two industrial examples and simulation comparisons, we conclude that the 2‐SPRT chart is competitive in that it is more sensitive and economical for small shifts and has advantages in administration because of fixed sampling points and a proper upper bound on the sample size. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
The coefficient of variation (CV) is a quality characteristic that has several applications in applied statistics and is receiving increasing attention in quality control. Few papers have proposed control charts that monitor this normalized measure of dispersion. In this paper, an adaptive Shewhart control chart implementing a variable sampling interval (VSI) strategy is proposed to monitor the CV. Tables are provided for the statistical properties of the VSI CV chart, and a comparison is performed with a Fixed Sampling Rate Shewhart chart for the CV. An example illustrates the use of these charts on real data gathered from a casting process. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
The variable sampling interval exponentially weighted moving average median chart with estimated process parameters is proposed. The charting statistic, optimal design, performance evaluation, and implementation of the proposed chart are discussed. The average of the average time to signal (AATS) criterion is adopted to evaluate the performance of the proposed chart. The estimated process parameter‐based VSI EWMA median (VSI EWMA median‐e) chart is compared with the estimated process parameter‐based Shewhart median (SH median‐e), EWMA median (EWMA median‐e), and variable sampling interval run sum median (VSI RS median‐e) charts, in terms of the AATS criterion, where the VSI EWMA median‐e chart is shown to be superior. When process parameters are estimated, the standard deviation of the average time to signal (SDATS) criterion is used to evaluate the AATS performance of the VSI EWMA median‐e chart. Based on the SDATS criterion, the minimum number of phase‐I samples required by the VSI EWMA median‐e chart so that its performance is close to the known process parameters VSI EWMA median chart is recommended.  相似文献   

13.
Exponential charts based on time-between-events (TBE) data are widely investigated and applied in various fields. The average time to signal (ATS) is used instead of the average run length to evaluate the performance of TBE charts, since the ATS involves both the number and the time of samples inspected until a signal occurs. An ATS-unbiased exponential control chart is proposed when the in-control parameter is known. Considering the need in practice to start monitoring a production process as soon as possible, a sequential sampling scheme is adopted and the in-control parameter is estimated by an unbiased and consistent estimator. Some specific guidelines to stop updating control limits are obtained from the relationship between the phase I sample size and the actual false alarm rate. Finally, two real examples are given to illustrate the implementation and efficiency of the proposed method.  相似文献   

14.
Short production runs are common in enterprises that require a high degree of flexibility and variety in manufacturing processes. To date, past research on short production runs has little focus on the multivariate control charts. In view of this, fixed sample size (FSS) and variable sample size (VSS) Hotelling's T2 charts are designed to monitor the process mean when the production horizon is finite. Optimal parameters to minimize the out‐of‐control (1) truncated average run length (TARL) and (2) expected TARL (ETARL) are provided such that the in‐control TARL is equal to the number of inspections (say I). The numerical study considers the run length performances of the FSS and VSS T2 short‐run charts for both known and unknown shift sizes. The VSS T2 short‐run chart performs well in swiftly detecting various mean shifts in comparison with the FSS T2 short‐run chart. Additionally, the VSS T2 short‐run chart is superior to the FSS T2 short‐run chart, in terms of the truncated standard deviation of the run length, expected truncated standard deviation of the run length, probability that the chart signals an alarm within the I inspections, ie, P(I) and expected P(I). A case study on the impurity profile of a crystalline drug substance illustrates the implementation of the VSS T2 short‐run chart.  相似文献   

15.
The R chart and the S2 chart are the usual charts for monitoring process dispersion; however, the double sampling (DS) scheme has only be used with the S2 chart. The difficulty in obtaining the properties of the DS R chart might explain the lack of papers dealing with this type of DS chart. The S2 chart has the advantage of being more efficient than the R chart, but the same is not always observed with their DS versions. Depending on the size of the 2 samples, the DS R chart performs better. The trade‐off between operational simplicity and power of detection might lead the practitioner to choose the DS R chart, even with the DS S2 chart signaling faster.  相似文献   

16.
Recent studies have shown that enhancing the common T2 control chart by using variable sample sizes (VSS) and variable sample intervals (VSI) sampling policies with a double warning line scheme (DWL) yields improvements in shift detection times over either pure VSI or VSS schemes in detecting almost all shifts in the process mean. In this paper, we look at this problem from an economical perspective, certainly at least as an important criterion as shift detection time if one considers what occurs in the industry today. Our method is to first construct a cost model to find the economic statistical design (ESD) of the DWL T2 control chart using the general model of Lorenzen and Vance (Technometrics 1986; 28 :3–11). Subsequently, we find the values of the chart parameters which minimize the cost model using a genetic algorithm optimization method. Cost comparisons of Fixed ratio sampling, VSI, VSS, VSIVSS with DWL, and multivariate exponentially weighted moving average (MEWMA) charts are made, which indicate the economic efficacy of using either VSIVSS with DWL or MEWMA charts in practice if cost minimization is of interest to the control chart user. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Variable sampling interval (VSI) charts have been proposed in the literature for normal theory (parametric) control charts and are known to provide performance enhancements. In the VSI setting, the time between monitored samples is allowed to vary depending on what is observed in the current sample. Nonparametric (distribution‐free) control charts have recently come to play an important role in statistical process control and monitoring. In this paper a nonparametric Shewhart‐type VSI control chart is considered for detecting changes in a specified location parameter. The proposed chart is based on the Wilcoxon signed‐rank statistic and is called the VSI signed‐rank chart. The VSI signed‐rank chart is compared with an existing fixed sampling interval signed‐rank chart, the parametric VSI ‐chart, and the nonparametric VSI sign chart. Results show that the VSI signed‐rank chart often performs favourably and should be used.  相似文献   

18.
分析了休哈特控制图的不足,设计出具有两种抽样区间长度的可变抽样区间(VSI)np图,当点子接近控制限时,使用较短的抽样区间;当点子接近目标值时,使用较长的抽样区间.若点子超出控制限,则与固定抽样区间控制图(FSI)一样发出信号.同时还计算了在可变抽样区间下发信号前的平均时间,并与固定抽样区间np图进行比较,所设计的VSI控制图能缩短过程失控时间,从而可减少不合格品数.  相似文献   

19.
Double sampling (DS) ‐control charts are designed to allow quick detection of a small shift of process mean and provides a quick response in an agile manufacturing environment. However, the DS ‐control charts assume that the process standard deviation remains unchanged throughout the entire course of the statistical process control. Therefore, a complementary DS chart that can be used to monitor the process variation caused by changes in process standard deviation should be developed. In this paper, the development of the DS s‐charts for quickly detecting small shift in process standard deviation for agile manufacturing is presented. The construction of the DS s‐charts is based on the same concepts in constructing the DS ‐charts and is formulated as an optimization problem and solved with a genetic algorithm. The efficiency of the DS s‐control chart is compared with that of the traditional s‐control chart. The results show that the DS s‐control charts can be a more economically preferable alternative in detecting small shifts than traditional s‐control charts. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
The CRL (Conforming Run Length) type control charts have attracted increasing interest recently for attribute Statistical Process Control (SPC). The two most promising charts of this type are identified as the CRL‐CUSUM chart and the SCRL (Sum of CRLs) chart. This article compares the operating characteristics of these two charts in a comprehensive manner. The general findings reveal that the CRL‐CUSUM chart excels the SCRL chart in detecting downward (decreasing) fraction nonconforming (p) shifts and large‐scale upward (increasing) p shifts. However, the SCRL chart is superior to the CRL‐CUSUM chart in detecting the small and moderate scale upward p shifts, especially when the normal p value is small. The information acquired in this study will provide Quality Assurance (QA) engineers with useful guidance for selecting and applying the CRL‐type control charts. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号