共查询到20条相似文献,搜索用时 31 毫秒
1.
Receptor tyrosine kinases (RTKs), such as the epidermal growth factor receptor (EGFR) and the platelet-derived growth factor receptor (PDGFR), are critically involved in the transduction of mitogenic signals across the plasma membrane and therefore in the regulation of cell growth and proliferation. Enhanced RTK activity is associated with proliferative diseases such as cancer, psoriasis and atherosclerosis, while decreased function may be associated for instance with diabetes. EGFR and PDGFR are selectively inhibited by analogues of the marine natural product aeroplysinin. The synthetic inhibitors display IC50 values in the low micromolar range and in contrast to the natural product show pronounced inhibitory activity in cultured cells in vivo. The mechanism of inhibition is likely based on a covalent modification of the target enzymes by reaction of epoxy ketone 8 with various nucleophiles. 相似文献
2.
During induction of the Caenorhabditis elegans hermaphrodite vulva, a signal from the anchor cell activates the LET-23 epidermal growth factor receptor (EGFR)/LET-60 Ras/MPK-1 MAP kinase signaling pathway in the vulval precursor cells. We have characterized two mechanisms that limit the extent of vulval induction. First, we found that gap-1 may directly inhibit the LET-60 Ras signaling pathway. We identified the gap-1 gene in a genetic screen for inhibitors of vulval induction. gap-1 is predicted to encode a protein similar to GTPase-activating proteins that likely functions to inhibit the signaling activity of LET-60 Ras. A loss-of-function mutation in gap-1 suppresses the vulvaless phenotype of mutations in the let-60 ras signaling pathway, but a gap-1 single mutant does not exhibit excess vulval induction. Second, we found that let-23 EGFR prevents vulval induction in a cell-nonautonomous manner, in addition to its cell-autonomous role in activating the let-60 ras/mpk-1 signaling pathway. Using genetic mosaic analysis, we show that let-23 activity in the vulval precursor cell closest to the anchor cell (P6.p) prevents induction of vulval precursor cells further away from the anchor cell (P3.p, P4.p, and P8.p). This result suggests that LET-23 in proximal vulval precursor cells might bind and sequester the inductive signal LIN-3 EGF, thereby preventing diffusion of the inductive signal to distal vulval precursor cells. 相似文献
3.
ZB Zheng S Nagai N Iwanami A Kobayashi M Hijikata S Natori U Sankawa 《Canadian Metallurgical Quarterly》1998,46(12):1950-1951
Twelve analogues of the antibacterial phenolic peptide 5-S-glutathionyl-beta-alanyl-L-dopa (5-S-GA-L-D: 1) were synthesized via orthoquinones using tyrosinase. Several synthesized compounds inhibited the v-Src autophosphorylation tyrosine kinase reaction with an IC50 value comparable to that of herbimycin. The inhibition of c-Src substrate phosphorylation was much less active than v-Src autophosphorylation inhibition. The analogues showed no effects on substrate phosphorylation by epidermal growth factor receptor (EGFR), and this selectivity is the most characteristic feature of the analogues (1-12). 相似文献
4.
Migration of lymphocytes from the blood into the brain is a critical event in the pathogenesis of experimental autoimmune encephalomyelitis. Lymphocyte adhesion to brain endothelium is the first step in lymphocyte entry into the central nervous system, leading subsequently to myelin damage and paralysis. In this paper we show that the tyrosine kinase inhibitor, tyrphostin AG490, prevents binding of freshly isolated mouse lymph node cells and of in vivo activated lymphocytes to endothelium of inflamed brain in Stamper-Woodruff adhesion assays. Moreover, AG490 inhibits adhesion of encephalitogenic T cell lines to purified ICAM-1 and VCAM-1, molecules implicated in T cell recruitment into the central nervous system. In contrast, 2-h treatment of T cell lines with high doses of tyrphostin AG490 have no effect on the viability, intracellular calcium elevation induced by Con A or TCR cross-linking, proliferation, or TNF production by Ag-stimulated T cell lines. Systemic administration of AG490 prevents the accumulation of leukocytes in the brain and the development of experimental autoimmune encephalomyelitis induced by proteolipid protein, peptide 139-151-specific T cell lines in SJL/J mice. Blood leukocytes isolated from mice treated with tyrphostin AG490 are less adhesive on purified very late Ag-4 ligands compared with adhesion of leukocytes from control animals. Our results suggest that inhibition of signaling pathways involved in lymphocyte adhesion may represent a novel therapeutic approach for demyelinating diseases. 相似文献
5.
W Beindl T Mitterauer M Hohenegger AP Ijzerman C Nanoff M Freissmuth 《Canadian Metallurgical Quarterly》1996,50(2):415-423
The 2-[14C]deoxyglucose method was used to examine the effects of chronic, voluntary ethanol consumption on rates of local cerebral glucose utilization (LCGU). LCGU was measured in male Long-Evans rats immediately following the completion of a 60-min schedule-induced polydipsia drinking session. Three groups of animals were examined: animals with a history of ethanol consumption that received ethanol on the test day (ethanol-ethanol), animals with a similar ethanol history that were presented with water on the test day (ethanol-water), and a control group that received water throughout the experiment (water-water). Ethanol consumption on the test day resulted in a highly discrete pattern of metabolic changes, with significant decreases in glucose utilization in the hippocampal complex, habenula, anterior ventral thalamus, and mammillary bodies, whereas increases were observed in the nucleus accumbens and locus coeruleus. Rates of LCGU in the ethanol-water group were increased throughout all regions of the central nervous system examined, indicating that the long-term consumption of moderate ethanol doses that do not produce physical dependence can cause significant changes in functional brain activity. 相似文献
6.
7.
We have examined the effects of seven protein kinase inhibitors (staurosporine, genistein, methyl 2,5-dihydroxycinnamate, tyrphostins B44 and B46, lavendustin A and R03) on the erythrocytic cycle of the malaria parasite, Plasmodium falciparum. One (staurosporine) strongly inhibits serine/threonine kinases, but the remainder all exhibit a strong preference for tyrosine kinases. We have been able to discriminate between effects on invasion and on intraerythrocytic development. All reagents impeded development of intraerythrocytic parasites, though at widely differing concentrations, from the sub-micromolar to the millimolar. Several inhibitors, including staurosporine, also reduced invasion. The phosphatase inhibitor, okadaic acid, had a strong inhibitory effect both on invasion and development. The regulation of malaria development by phosphorylation or dephosphorylation reactions at several points in the blood-stage cycle is implied. 相似文献
8.
T-cell antigen receptor (TCR) signalling has been shown to involve two classes of tyrosine protein kinases: the Src-related kinases p56(lck) and p59(fyr), and the Zap-70/Syk family kinases. Lck and FynT are postulated to initiate TCR-triggered signal transduction by phosphorylating the CD3 and zeta subunits of the TCR complex. This modification permits the recruitment of Zap-70 and Syk, which are presumed to amplify the TCR-triggered signal, by phosphorylating additional intracellular proteins. While Zap-70 is expressed in all T cells, Syk is present in thymocytes and mature T-cell populations such as intraepithelial gammadelta T cells and naive alphabeta T cells. To better understand the role of Syk in these cells, its impact on the physiology of an antigen-specific T-cell line was tested. Our results showed that compared to Zap-70 alone, Syk was a strong positive regulator of antigen receptor-induced signals in BI-141 cells. Surprisingly, they indicated that, like Src family kinases, Syk augmented TCR-triggered tyrosine phosphorylation of CD3/zeta. Syk, but not Zap-70 alone, could also stimulate tyrosine phosphorylation of a zeta-bearing chimera in transiently transfected Cos-1 cells. Finally, evidence was provided that Syk has the capacity to directly phosphorylate a zeta-derived peptide in vitro. These findings suggested that Syk may have a unique role in T cells, as a consequence of its ability to efficiently phosphorylate multiple components of the TCR signalling cascade. Furthermore, they raised the possibility that Syk can regulate the initiation of TCR signalling, by promoting phosphorylation of the immunoreceptor tyrosine-based activation motifs of the TCR complex. 相似文献
9.
Several protein kinases are known to phosphorylate Ser/Thr residues of certain GABAA receptor subunits. Yet, the effect of phosphorylation on GABAA receptor function in neurons remains controversial, and the functional consequences of phosphorylating synaptic GABAA receptors of adult CNS neurons are poorly understood. We used whole-cell patch-clamp recordings of GABAA receptor-mediated miniature IPSCs (mIPSCs) in CA1 pyramidal neurons and dentate gyrus granule cells (GCs) of adult rat hippocampal slices to determine the effects of cAMP-dependent protein kinase (PKA) and Ca2+/phospholipid-dependent protein kinase (PKC) activation on the function of synaptic GABAA receptors. The mIPSCs recorded in CA1 pyramidal cells and in GCs were differentially affected by PKA and PKC. In pyramidal cells, PKA reduced mIPSC amplitudes and enhanced the fraction of events decaying with a double exponential, whereas PKC was without effect. In contrast, in GCs PKA was ineffective, but PKC increased the peak amplitude of mIPSCs and also favored double exponential decays. Intracellular perfusion of the phosphatase inhibitor microcystin revealed that synaptic GABAA receptors of pyramidal cells, but not those of GCs, are continually phosphorylated by PKA and conversely, dephosphorylated, most likely by phosphatase 1 or 2A. This differential, brain region-specific phosphorylation of GABAA receptors may produce a wide dynamic range of inhibitory synaptic strength in these two regions of the hippocampal formation. 相似文献
10.
Listeria monocytogenes is a pathogenic bacterium which has been implicated in several foodborne illnesses. This microorganism grows into biofilms attached to the surfaces in food-processing plants, increasing its resistance to antimicrobial agents. The present work was realized to investigate the attachment of L. monocytogenes isolates to glass surfaces and to find a decontamination procedure to remove these bacteria in biofilms. Three-day biofilms were prepared by growing L. monocytogenes isolates from food plant environments on glass surfaces. Sixteen decontamination treatments at different pHs, temperatures, and times of exposure were tested against L. monocytogenes biofilms. The most efficient treatments were those applied at 63 degrees C. Combinations of decontamination treatments applied at 55 degrees C for 30 min provided different results according to the other factors used. In general, L. monocytogenes biofilms were found to be not very susceptible to high osmolarity (10.5% NaCl), and the interaction of sodium chloride and acid did not seem to have important effects in inactivating these bacteria (from a 1.3-to a 1.9-log-CFU/cm2 reduction). The combination of NaOH (pH 10.5; 100 mM) and acetic acid (pH 5.4; 76.7 mM) applied sequentially at 55 degrees C for even 5 min was shown to be the most effective treatment to remove L. monocytogenes from biofilms (at least a 4.5-to 5.0-log-CFU/cm2 decline). 相似文献
11.
Inhibition of demecolcin-induced DNA synthesis by inhibitors of phospholipase C and protein kinase C
PURPOSE OF STUDY: Interleukin-2 (IL-2) is a potent activator of lymphocytes, but its effectiveness as an anti-cancer agent is compromised by several adverse side effects including pulmonary edema. One explanation for the pulmonary toxicity of IL-2 is that activated lymphocytes directly induce the pulmonary vascular endothelium to become more leaky. METHODS: To test this hypothesis the number of total lymphocytes, gamma delta T cells, and CD2-positive cells (alpha beta T cells and natural killer cells) in peripheral blood and lung lymph of sheep were compared before and after IL-2 infusion. Hemodynamic and lymph dynamic changes were also evaluated. RESULTS: IL-2 decreased mean aortic pressure, increased cardiac output, lowered systemic vascular resistance, and doubled lung lymph flow (P < or = 0.05), but had no effect on plasma or lymph oncotic pressure. The lymph protein concentration and the lymph-to-plasma protein concentration ratio were not different after IL-2 infusion. IL-2 had no effect on the number of total lymphocytes, gamma delta T cells, or CD2-positive cells in the peripheral blood. In contrast, the number of total lymphocytes, gamma delta T cells, and CD2-positive cells in lung lymph decreased significantly (P < or = 0.05). CONCLUSIONS: The lymphocyte populations decreased more than could be explained by the increase in lymph flow, demonstrating that lung lymphocytes were not reduced simply by dilution. These results imply that the pulmonary edema associated with IL-2 is not caused by activated lymphocytes. 相似文献
12.
A Buj-Bello J Adu LG Pi?ón A Horton J Thompson A Rosenthal M Chinchetru VL Buchman AM Davies 《Canadian Metallurgical Quarterly》1997,387(6634):721-724
Neurturin (NTN) is a recently identified homologue of glial-cell-line-derived neurotrophic factor (GDNF). Both factors promote the survival of a variety of neurons, and GDNF is required for the development of the enteric nervous system and kidney. GDNF signals through a receptor complex consisting of the receptor tyrosine kinase Ret and a glycosyl-phosphatidylinositol (GPI)-linked receptor termed GDNFR-alpha. Here we report the cloning of a new GPI-linked receptor termed NTNR-alpha that is homologous with GDNFR-alpha and is widely expressed in the nervous system and other tissues. By using microinjection to introduce expression plasmids into neurons, we show that coexpression of NTNR-alpha with Ret confers a survival response to neurturin but not GDNF, and that coexpression of GDNFR-alpha with Ret confers a survival response to GDNF but not neurturin. Our findings indicate that GDNF and neurturin promote neuronal survival by signalling through similar multicomponent receptors that consist of a common receptor tyrosine kinase and a member of a GPI-linked family of receptors that determines ligand specificity. 相似文献
13.
14.
JL Bullington JC Cameron JE Davis JH Dodd CA Harris JR Henry JL Pellegrino-Gensey KC Rupert JJ Siekierka 《Canadian Metallurgical Quarterly》1998,8(18):2489-2494
Early T-cell receptor mediated signal transduction involves the activation of several tyrosine protein kinases. One of these tyrosine kinases, p56lck, is expressed primarily in T-cells and Natural Killer (NK) cells and has been shown to be critical for their proliferative and effector functions. Indandiones have been identified as a potent and selective chemical class that inhibits p56lck. 相似文献
15.
The clotting enzyme thrombin is known to cause receptor-mediated contractile effects in isolated blood vessels. In the present studies the influence of protein kinase inhibitors on the contractile response of porcine pulmonary arteries to thrombin (3 U/ml) was investigated. Endothelium-denuded rings (2-3 mm) from small arteries were placed in organ baths for isometric tension recording. The vessels were preincubated for 30 min with the inhibitors before inducing contractions. In the presence of the protein kinase C (PKC)-inhibitors staurosporine, BIM I (bisindolyl-maleimide I), chelerythrine and Ro 31-8220 (1 microM each), the contractile responses to the PKC activator phorbol 12,13-dibutyrate (PDBu; 50 nM) were diminished by 70-100%. However, for inhibition of thrombin-induced contractions generally higher concentrations of the inhibitors were required. Only staurosporine at 1 microM inhibited the thrombin effect by about 75%. The tyrosine kinase inhibitor erbstatin (30 microM) did not significantly alter the thrombin effect, whereas genistein at 10 microM caused a significant inhibition of contractile responses to both thrombin and PGF2alpha. At 100 microM genistein also inhibited the contractile effects of PdBu and KCl. These studies suggest that activation of both PKC and non-receptor tyrosine kinases seems to be involved in the signal transduction pathways of thrombin-induced contractile effects in isolated vessels. 相似文献
16.
The steroid hormone progesterone (P4) is essential for establishing and maintaining pregnancy in mammals. One of its functions includes maintenance of uterine quiescence by decreasing uterine sensitivity to the uterotonic peptide hormone oxytocin. Although it is generally held that steroid hormones such as P4 act at a genomic level by binding to nuclear receptors and modulating the expression of specific target genes, we show here that the effect of P4 on uterine sensitivity to oxytocin involves direct, non-genomic action of P4 on the uterine oxytocin receptor (OTR), a member of the G-protein-coupled receptor family. P4 inhibits oxytocin binding to OTR-containing membranes in vitro, binds with high affinity to recombinant rat OTR expressed in CHO cells, and suppresses oxytocin-induced inositol phosphate production and calcium mobilization. These effects are highly steroid- and receptor-specific, because binding and signalling functions of the closely related human OTR are not affected by P4 itself but by the P4 metabolite 5beta-dihydroprogesterone. Our findings provide the first evidence for a direct interaction between a steroid hormone and a G-protein-coupled receptor and define a new level of crosstalk between the peptide- and steroid-hormone signalling pathways. 相似文献
17.
G protein-coupled receptor kinases (GRKs) are implicated in the homologous desensitization of G protein-coupled receptors. Six GRK subtypes have so far been identified, named GRK1 to GRK6. The functional state of the GRKs can be actively regulated in different ways. In particular, it was found that retinal rhodopsin kinase (GRK1), but not the ubiquitous betaARK1 (GRK2), can be inhibited by the photoreceptor-specific Ca2+-binding protein recoverin through direct binding. The present study was aimed to investigate regulation of other GRKs by alternative Ca2+-binding proteins such as calmodulin (CaM). We found that Gbetagamma-activated GRK2 and GRK3 were inhibited by CaM to similar extents (IC50 approximately 2 microM), while a 50-fold more potent inhibitory effect was observed on GRK5 (IC50 = 40 nM). Inhibition by CaM was strictly dependent on Ca2+ and was prevented by the CaM inhibitor CaMBd. Since Gbetagamma, which is a binding target of Ca2+/CaM, is critical for the activation of GRK2 and GRK3, it provides a possible site of interaction between these proteins. However, since GRK5 is Gbetagamma-independent, an alternative mechanism is conceivable. A direct interaction between GRK5 and Ca2+/CaM was revealed using CaM-conjugated Sepharose 4B. This binding does not influence the catalytic activity as demonstrated using the soluble GRK substrate casein. Instead, Ca2+/CaM significantly reduced GRK5 binding to the membrane. The mechanism of GRK5 inhibition appeared to be through direct binding to Ca2+/CaM, resulting in inhibition of membrane association and hence receptor phosphorylation. The present study provides the first evidence for a regulatory effect of Ca2+/CaM on some GRK subtypes, thus expanding the range of different mechanisms regulating the functional states of these kinases. 相似文献
18.
1. The effects of activation of endogenous adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase (PKA), intracellular application of PKA and inhibition of endogenous PKA by protein kinase inhibitory peptide (PKIP) on hippocampal dentate granule cell gamma-aminobuturic acid A (GABAA) receptor (GABAR) currents were characterized. 2. GABAR currents evoked by repeated application of GABA (30 or 100 microM) were enhanced by application of 1 mM norepinephrine (52 +/- 26%; mean +/- SE; n = 11) and of 500 mM 8-bromo cAMP (15 +/- 2%, n = 7). 3. GABA concentration response curves were obtained from six dentate granule cells before and after application of 500 microM 8-bromo cAMP. The maximal current was increased significantly by 89 +/- 36%, but the mean EC50 was not significantly changed (68 +/- 42 microM vs. 25 +/- 10 microM). 4. The GABA concentration response relationship was studied in a group of 7 granule cells recorded with pipettes containing PKIP and 2 mM ATP and compared with another group of 12 cells recorded with 2 mM ATP in the pipette. When currents were recorded with intracellular PKIP, the mean EC50 for GABA was no different (43 +/- 9 microM vs. 45 +/- 16 microM); however, the maximal current obtained was smaller, (961 +/- 102 pA vs. 658 +/- 104 pA). 5. Concentration response data were obtained from four granule cells using recording pipettes containing the cPKA and an ATP regeneration system and compared with seven cells recorded with the ATP regeneration system. With cPKA, the maximal GABAR current was significantly larger (1,224 +/- 132 pA vs. 718 +/- 56 pA), but the EC50 for GABA was not significantly altered (21 +/- 2.0 microM vs. 79 +/- 25 microM). 相似文献
19.
SK Gillespie S Balasubramanian ET Fung RL Huganir 《Canadian Metallurgical Quarterly》1996,16(5):953-962
Nerve-induced clustering of the nicotinic acetylcholine receptor (AChR) requires rapsyn, a synaptic peripheral membrane protein, as well as protein-tyrosine kinase activity. Here, we show that rapsyn induces the clustering of the synapse-specific receptor-tyrosine kinase MuSK in transfected QT-6 fibroblasts. Furthermore, rapsyn stimulates the autophosphorylation of MuSK, leading to a subsequent MuSK-dependent increase in cellular tyrosine phosphorylation. Moreover, rapsyn-activated MuSK specifically phosphorylated the AChR beta subunit, the same subunit that is tyrosine phosphorylated during innervation or agrin treatment of muscle. These results suggest rapsyn may mediate the synaptic localization of MuSK in muscle and that MuSK may play an important role in the agrin-induced clustering of the AChR. 相似文献
20.
A Tallett ER Chilvers S Hannah I Dransfield MF Lawson C Haslett T Sethi 《Canadian Metallurgical Quarterly》1996,56(18):4255-4263
Small cell lung cancer (SCLC) cell growth is sustained by multiple autocrine and paracrine growth loops involving neuropeptides. The bombesin family of peptides are autocrine growth factors in H345 SCLC cells and provide a paradigm for the study of growth factors and mitogenic signaling in SCLC cells. We show that bombesin (and other neuropeptides) stimulates protein tyrosine phosphorylation (particularly focal adhesion kinase) and protein tyrosine kinase (PTK) activity in intact SCLC cells. Furthermore, the broad spectrum neuropeptide receptor antagonist [D-Arg, D = Phe, D-Trp, Leu11]substance P inhibits all neuropeptide-mediated signals (including PTK activation), SCLC cell growth in vivo and in vitro, and also increases the natural rate of apoptosis seen in growing SCLC cell lines. Hence the effect of selective PTK inhibition on SCLC cell growth and apoptosis was examined. We show that selective inhibition of PTK activity, with genistein and (3,4,5-tri-hydroxyphenyl)-methylene(-propanedinitrile) tyrphostin-25 inhibits basal and neuropeptide-stimulated SCLC cell growth. Genistein and tyrphostin-25 also stimulate apoptosis in SCLC cells. Inhibition of proliferation in these cells is intimately linke to apoptosis, because these changes occurred without any effect on SCLC cell cycle kinetics, suggesting that apoptosis occurs independently of the cell cycle and that failure to progress through the cell cycle results in apoptosis. Because tyrphostin-25 fails to influence p53 or Bcl-2 expression in these cells, this mode of programmed cell death appears to be via a p53- and Bcl-2-independent mechanism. These results provide evidence that tyrosine phosphorylation is a mitogenic signal in SCLC cells and suggest that regulation of the level of protein tyrosine phosphorylation represents a critical determinant of whether SCLC cells survive and proliferate or die by apoptosis. Thus PTK inhibition may provide a novel therapeutic option in SCLC that has become resistant to conventional chemotherapeutic agents. 相似文献