首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, rundown of gamma-aminobutyric acid (GABA)-activated Cl- channels was studied in recombinant GABAA receptors stably expressed in human embryonic kidney cells (HEK 293), with conventional whole-cell and amphotericin B-perforated patch recording. When [ATP]i was lowered to 1 mM and resting [Ca++]i was buffered to a relatively high level, the response of alpha 3 beta 2 gamma 2 GABAA receptors to relatively low [GABA] (up to 50 microM) did not show rundown in the whole-cell configuration. However, high [GABA] (greater than 200 microM) induced significant rundown, which was observed by decreases in both the maximum GABA-induced current and GABA EC50. Rundown was prevented completely with a solution containing 4 mM Mg(++)-ATP and low resting [Ca++]i, or during perforated patch recording. The magnitude of rundown was comparable in alpha 1 beta 2 gamma 2 and beta 2 gamma 2 receptors. Neither stimulation nor inhibition of protein kinase A or protein kinase C had a significant effect on rundown. However, sodium metavanadate, an inhibitor of protein tyrosine phosphatase, significantly reduced rundown. In addition, inhibition of protein tyrosine kinase activity by either genistein or lavendustin A induced rundown of the GABA response. Inhibition of the Ca++/calmodulin-dependent phosphatase calcineurin with fenvalerate also prevented rundown of the response to GABA. Our results demonstrate that rundown of GABAA receptor function is concentration-dependent, due to depletion of ATP and/or unbuffered [Ca++]i, and does not depend on the presence or subtype of the alpha subunit. We propose that protein phosphorylation at a tyrosine kinase-dependent site, and a distinct unidentified site, which is dephosphorylated by calcineurin, maintains the function of GABAA receptors.  相似文献   

2.
A group of pyrrolopyrimidine derivatives were examined for their interaction with rat recombinant gamma-aminobutyric acid (GABA)A receptors using the whole cell patch clamp and equilibrium binding techniques. In the alpha 1 beta 2 gamma 2 subtype of GABAA receptors expressed in human embryonic kidney cells, a prototype pyrrolopyrimidine, U-89843A (7H-pyrrol[2,3-d]pyrimidine,6,7-methyl-2,4-di- 1-pyrrolidinyl,hydrochloride), dose-dependently enhanced 5 microM GABA-induced Cl- currents with a maximal enhancement of 362 +/- 91%, a half-maximal concentration of 2 +/- 0.4 microM and a slope factor of 1.1 +/- 0.4. The drug also inhibited [35S]t-butylbicyclophosphorothionate binding in rat cerebrocortical membranes with a similar half-maximal inhibitory concentration. The enhancement of Cl- currents by U-89843A was insensitive to Ro 15-1788 (a benzodiazepine antagonist), was also observed in the alpha 3 beta 2 gamma 2 and alpha 6 beta 2 gamma 2 subtypes (no selectivity to different alpha-isoforms unlike many benzodiazepines), but was absent in the receptor subtypes consisting of two subunits (alpha 1 beta 2, alpha 1 gamma 2 and beta 2 gamma 2). It has been known that neurosteroids and barbiturates are uniformly active in both the two subunit receptors, substituted pyrazinones are only active in the alpha 1 beta 2 subtype and loreclezole is active in the subtypes containing beta 2. We propose that U-89843A interacts with an allosteric site on GABAA receptors distinct from the sites for benzodiazepines, barbiturates, neurosteroids, substituted pyrazinones or loreclezole.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We characterized modulation of the gamma-aminobutyric acid (GABA)-evoked responses of the diazepam-insensitive alpha 4 beta 2 gamma2 and alpha 6 beta 2 gamma 2 recombinant GABAA receptors. The partial agonist bretazenil potentiated the responses of both receptors with similar dose dependence but with a higher maximal enhancement at the alpha 4 beta 2 gamma 2 receptor. The bretazenil-induced potentiation was reduced by the benzodiazepine antagonist flumazenil. At a high concentration (10 microM), flumazenil was a weak potentiator of the GABA response. The partial agonist imidazenil was inactive. The imidazobenzodiazepine inverse agonist Ro 15-4513, which is known to bind with high affinity to the alpha 6 beta 2 gamma 2 receptor, potentiated the GABA responses of the alpha 4 beta 2 gamma 2 and alpha 6 beta 2 gamma 2 receptor subtypes with similar dose dependence over the concentration range of 0.1-10 microM. Methyl-6, 7-dimethoxy-4-ethyl-beta-carboline, a beta-carboline inverse agonist, had a similar potentiating effect when tested at a concentration of 10 microM. The alpha 4 beta 2 gamma 2 and alpha 6 beta 2 gamma 2 receptor-mediated currents had equal sensitivities to furosemide and Zn2+ ions, both of which reduced the GABA-evoked responses. The alpha 6 beta 2 gamma 2 receptor but not the alpha 4 beta 2 gamma 2 receptor exhibited a low level of spontaneous activity in the absence of GABA; this resting current could be directly potentiated by Ro 15-4513, methyl-6,7-dimethoxy-4-ethyl-beta-carboline, bretazenil and flumazenil and was blocked by picrotoxin. Thus, although the alpha 4 beta 2 gamma 2 receptors are insensitive to benzodiazepine binding site full agonists, such as diazepam, they can be modulated by certain ligands acting as partial and inverse agonists at diazepam-sensitive receptors and thereby contribute to the respective pharmacological profiles.  相似文献   

4.
We sought to test the hypotheses that closely related alcohols would have effects on GABAA receptor function that were not predicted by differences in lipid solubility, and that the subunit structure of the GABAA receptor would significantly affect the actions of different alcohols. Cloned subunits of human GABAA receptors were expressed in Xenopus oocytes, and two-electrode voltage-clamp recording was used to quantify the membrane current response to GABA in the presence and absence of different alcohols. 1-Butanol and 2-butanol differentially potentiated the response to 20 microM GABA in oocytes expressing the alpha 1 beta 2 gamma 2L and alpha 2 beta 2 gamma 2L receptor isoforms. In the alpha 1 beta 2 gamma 2L receptor construct, 1-butanol was more potent than 2-butanol to potentiate GABAA receptor function, but 2-butanol had a greater efficacy. In the alpha 2 beta 2 gamma 2L receptor construct, 1-butanol and 2-butanol were equipotent, but 2-butanol again had a greater efficacy. In the alpha 2 beta 2 receptor construct, both 1-butanol and 2-butanol produced large potentiations of the current response to 3 microM GABA. The efficacy for butanol potentiation of GABA responses in the absence of a gamma 2L subunit was greater, but the potency was greatly reduced. Low concentrations (20 mM) of ethanol potentiated GABA responses in the alpha 1 beta 2 gamma 2L receptor construct. Ethanol potentiation of GABAA receptor function was completely blocked by the benzodiazepine receptor partial inverse agonist RO15-4513 at a concentration (0.5 microM) that did not alter the control GABA response. In contrast, RO15-4513 did not block potentiation of GABAA receptor activity induced by n-propanol, 1-butanol, 2-butanol, 1-heptanol, or propofol (2,6-diisopropylphenol). These results suggest that alcohols have specific interactions with GABAA receptors, and that ethanol may have unique effects not shared by other longer chain alcohols.  相似文献   

5.
The diagonal band of Broca (DBB) is involved in a wide array of physiological functions which are, in part, mediated by activation of GABAA receptors. DBB is enriched in GABA and protein tyrosine kinase (PTK) immunoreactivity. Whole-cell patch-clamp recording were performed from acutely dissociated DBB neurons to investigate the involvement of PTK in GABAA receptor function. The activation of GABAA receptor by the selective agonist, muscimol (5 microM) was dependent on the presence of intracellular ATP. Omission of ATP in the intracellular medium resulted in a fast decrement of the response whereas inclusion of sodium orthovanadate (100 microM), a non-specific phosphatase inhibitor, augmented the response and inhibited 'run down' of the response. Genistein (100 microM) and tyrphostin B-44 (-), specific inhibitors of PTK, attenuated the response to muscimol. The muscimol response was not affected by daidzein (100 microM); an inactive analogue of genistein) nor by tetraethylammonium bromide (1 mM). These observations suggest that phosphorylation is important for the activation and long term maintenance of GABAA receptor function. PTK phosphorylation, which has been previously identified as an important event in signal transduction, may modulate GABA mediated neurotransmission in the forebrain.  相似文献   

6.
Loreclezole, an anticonvulsant and antiepileptic compound, potentiates gamma-aminobutyric acid (GABA) type A receptor function, by interacting with a specific allosteric modulatory site on receptor beta-subunits. A similar selectivity for GABAA receptor beta-subunits is apparent for the direct activation of receptor-operated Cl- channels, by the general anesthetics propofol and pentobarbital. The ability of loreclezole to activate GABAA receptors directly has now been compared, biochemically and electrophysiologically, with that of propofol. In well-washed rat cortical membranes (devoid of endogenous GABA), loreclezole and propofol increased t-[35S]butylbicyclophosphorothionate ([35S]TBPS) binding by up to 28% (at 5 microM) and 80% (at 10 microM), respectively. Higher concentrations (50-100 microM) of both compounds inhibited [35S]TBPS binding with great efficacy, an effect mimicked by GABA. In contrast, the benzodiazepine diazepam increased [35S]TBPS binding, but failed to inhibit this parameter, even at high concentrations. At concentrations of 50-100 microM, loreclezole induced inward Cl- currents in the absence of GABA, in Xenopus oocytes expressing human recombinant GABAA receptors, comprised of alpha 1-, beta 2- and gamma 2S-subunits. At 100 microM, the current evoked by loreclezole was 26% of that induced by 5 microM GABA. The current evoked by 100 microM propofol was 98% of that induced by 5 microM GABA. Currents induced by loreclezole, like those evoked by propofol, were potentiated by diazepam in a flumazenil-sensitive manner and blocked by either bicuculline or picrotoxin. These data suggest that loreclezole shares, with propofol, an agonistic action at GABAA receptors containing the beta 2-subunit and that the different efficacies of the two compounds in this regard, may underlie the difference in their pharmacological profiles. The failure of loreclezole to activate GABAA receptors containing the beta 1-subunit may be responsible for its lack of hypnotic effect.  相似文献   

7.
1. A comparative study of the actions of structurally diverse allosteric modulators on mammalian (human alpha 3 beta 2 gamma 2L) or invertebrate (Drosophila melanogaster Rdl or a splice variant of Rdl) recombinant GABA receptors has been made using the Xenopus laevis oocyte expression system and the two electrode voltage-clamp technique. 2. Oocytes preinjected with the appropriate cRNAs responded to bath applied GABA with a concentration-dependent inward current. EC50 values of 102 +/- 18 microM; 152 +/- 10 microM and 9.8 +/- 1.7 microM were determined for human alpha 3, beta 1 gamma 2L, Rdl splice variant and the Rdl receptors respectively. 3. Pentobarbitone enhanced GABA-evoked currents mediated by either the mammalian or invertebrate receptors. Utilizing the appropriate GABA EC10, the EC50 for potentiation was estimated to be 45 +/- 1 microM, 312 +/- 8 microM and 837 +/- 25 microM for human alpha 3, beta 1 gamma 2L, Rdl splice variant and Rdl receptors respectively. Maximal enhancement (expressed relative to the current induced by the EC10 concentration of GABA where this latter response = 1) at the mammalian receptor (10.2 +/- 1 fold) was greater that at either the Rdl splice variant (5.5 +/- 1.3 fold) or Rdl (7.9 +/- 0.8 fold) receptors. 4. Pentobarbitone directly activated the human alpha 3 beta 1 gamma 2L receptor with an EC50 of 1.2 +/- 0.03 mM and had a maximal effect amounting to 3.3 +/- 0.4 fold of the response evoked by the EC10 concentration of GABA. Currents evoked by pentobarbitone were blocked by 10-30 microM picrotoxin and potentiated by 0.3 microM flunitrazepam. Pentobarbitone did not directly activate the invertebrate GABA receptors. 5. 5 alpha-Pregnan-3 alpha-ol-20-one potentiated GABA-evoked currents mediated by the human alpha 3 beta 1 gamma 2L receptor with an EC50 of 87 +/- 3 nM and a maximal enhancement of 6.7 +/- 0.8 fold of that produced by the GABA EC10 concentration. By contrast, relatively high concentrations (3-10 microM) of this steroid had only a modest effect on the Rdl receptor and its splice variant. 6. A small direct effect of 5 alpha-pregnan-3 alpha-ol-20-one (0.3-10 microM) was detected for the human alpha 3 beta 1 gamma 2L receptor (maximal effect only 0.08 +/- 0.01 times that of the GABA EC10). This response was antagonized by 30 microM picrotoxin and enhanced by flunitrazepam (0.3 microM). 5 alpha-Pregnan-3 alpha-ol-20-one did not directly activate the invertebrate GABA receptors. 7. Propofol enhanced GABA-evoked currents mediated by human alpha 3 beta 1 gamma 2L and Rdl splice variant receptors with EC50 values of 3.5 +/- 0.1 microM and 8 +/- 0.3 microM respectively. The maximal enhancement was similar at the two receptor types (human 11 +/- 1.8 fold; invertebrate 8.8 +/- 1.4 fold that of the GABA EC10). 8. Propofol directly activated the human alpha 3 beta 1 gamma 2L receptor with an EC50 of 129 +/- 10 microM, and at a maximally effective concentration, evoked a current amounting to 3.5 +/- 0.5 times that elicited by a concentration of GABA producing 10% of the maximal response. The response to propofol was blocked by 10-30 microM picrotoxin and enhanced by flunitrazepam (0.3 microM). Propofol did not directly activate the invertebrate Rdl splice variant receptor. 9. GABA-evoked currents mediated by the human alpha 3 beta 1 gamma 2L receptor were potentiated by etomidate (EC50 = 7.7 +/- 0.2 microM) and maximally enhanced to 8 +/- 0.8 fold of the response to an EC10 concentration of GABA. By contrast, the Rdl, or Rdl splice variant forms of the invertebrate GABA receptor were insensitive to the positive allosteric modulating actions of etomidate. Neither the mammalian nor the invertebrate receptors, were directly activated by etomidate. 10. delta-Hexachlorocyclohexane enhanced GABA-evoked currents with EC50 values of 3.4 +/- 0.1 microM and 3.0 +/- 0.1 microM for the human alpha 3 beta 1 gamma 2L receptor and the Rdl splice variant receptor respectively. The maximal enhancement was 4.5  相似文献   

8.
The alpha subunits are an important determinant of the pharmacology of gamma-aminobutyric acidA (GABAA) receptors with respect to agonists, antagonists, and modulatory compounds, particularly the benzodiazepines. The alpha 4 subunit is the least abundant subunit in the brain and the most similar in deduced primary amino acid sequence to the alpha 6 subunit. We demonstrate that the human alpha 4 subunit forms a functional receptor when expressed with beta gamma 2, demonstrating some properties similar to alpha 6 beta gamma 2 and some properties more akin to alpha 1 beta gamma 2. It also exhibited some properties that were unlike any other alpha subunit-containing receptor. GABA affinity seemed to be identical to that of the alpha 1 beta 1 gamma 2 receptor; however, the partial agonists 4,5,6,7-tetrahydroisoxazolo-[5,4-c]pyridin-3-ol and piperidine-4-sulfonic acid showed lower efficacy than at either alpha 1 beta 1 gamma 2 or alpha 6 beta 1 gamma 2. Benzodiazepine pharmacology of alpha 4-containing receptors was similar to that of alpha 6-containing receptors with the exception of dimethoxy-4-ethyl-beta-carboline-3-carboxylate, which behaved as a partial inverse agonist. Pentobarbital potentiated alpha 4 beta 1 gamma 2 receptor GABA responses to a level comparable with alpha 6 beta 1 gamma 2 (approximately 700% of EC20); however, unlike alpha 6 beta 1 gamma 2 receptors, it did not elicit any direct activation of the receptor. Propofol also potentiated alpha 4 beta 1 gamma 2 GABA responses but to a level more comparable to that of alpha 1 beta 1 gamma 2, suggesting that these compounds act via different sites. Unlike other subunit combinations, propofol did not elicit a direct activation of the receptor. These results suggest that the mechanism for direct activation of the GABAA receptor by pentobarbital and propofol is absent on alpha 4-containing receptors. Furosemide, which non-competitively inhibits the GABAA receptor, showed 700-fold selectivity for alpha 6 beta 3 gamma 2 receptors over alpha 1-, alpha 2-, alpha 3-, and alpha 5-containing receptors and exhibited selectivity for alpha 4 beta 3 gamma 2 receptors (> 50-fold). These experiments reveal a unique pharmacology for alpha 4-containing receptors with some similarities to both alpha 6- and alpha 1-containing receptors.  相似文献   

9.
We investigated the effects of the protein tyrosine kinase inhibitors, genistein, tyrphostin 47, and herbimycin on prostaglandin F2alpha- and carbachol-induced inositol-1,4,5-trisphosphate (IP3) production, [Ca2+]i mobilization and contraction in cat iris sphincter smooth muscle. Prostaglandin F2alpha and carbachol induced contraction in a concentration-dependent manner with EC50 values of 0.92 x 10(-9) and 1.75 x 10(-8) M, respectively. The protein tyrosine kinase inhibitors blocked the stimulatory effects of prostaglandin F2alpha, but not those evoked by carbachol, on IP3 accumulation, [Ca2+]i mobilization and contraction, suggesting involvement of protein tyrosine kinase activity in the physiological actions of the prostaglandin. Daidzein and tyrphostin A, inactive negative control compounds for genistein and tyrphostin 47, respectively, were without effect. Latanoprost, a prostaglandin F2alpha analog used as an antiglaucoma drug, induced contraction and this effect was blocked by genistein. Genistein (10 microM) markedly reduced (by 67%) prostaglandin F2alpha-stimulated increase in [Ca2+]i but had little effect on that of carbachol in cat iris sphincter smooth muscle cells. Vanadate, a potent inhibitor of protein tyrosine phosphatase, induced a slow gradual muscle contraction in a concentration-dependent manner with an EC50 of 82 microM and increased IP3 generation in a concentration-dependent manner with an EC50 of 90 microM. The effects of vanadate were abolished by genistein (10 microM). Wortmannin, a myosin light chain kinase inhibitor, reduced prostaglandin F2alpha- and carbachol-induced contraction, suggesting that the involvement of protein tyrosine kinase activity may lie upstream of the increases in [Ca2+]i evoked by prostaglandin F2alpha. Further studies aimed at elucidating the role of protein tyrosine kinase activity in the coupling mechanism between prostaglandin F2alpha receptor activation and increases in intracellular Ca2+ mobilization and identifying the tyrosine-phosphorylated substrates will provide important information about the role of protein tyrosine kinase in the mechanism of smooth muscle contraction, as well as about the mechanism of the intraocular pressure lowering effect of the prostaglandin in glaucoma patients.  相似文献   

10.
The gamma-aminobutyric acid (GABA)A receptor is a hetero-oligomer consisting of five subunits, the combination of which confers unique pharmacological properties to the receptor. To understand the physiological role of native GABAA receptors, it is critical to determine their subunit compositions. The pharmacological characteristics of human alpha5 beta3 gamma2 and alpha5beta3gamma3 GABAA receptors stably expressed in L(tk-) cells were characterized with the alpha5-selective ligand [3H]L-655,708 and compared with the pharmacological characteristics of [3H]L-655,708 binding sites from rat and human hippocampus. Saturation analyses revealed a 9-fold selective affinity of [3H]L-655,708 for alpha5 beta3 gamma2 receptors (Kd = 1.7 +/- 0.4 nM), compared with alpha5 beta3 gamma3 receptors (Kd = 15 +/- 3 nM). Rat and human hippocampal [3H]L-655,708 binding sites had affinities of 2.2 +/- 0.6 and 1.0 +/- 0.2 nM, respectively, comparable to the affinity of alpha5 beta3 gamma2 receptors. Pharmacological analysis of [3H]L-655,708 binding sites in rat and human hippocampi revealed a strong correlation with the affinities of seven benzodiazepine site ligands for alpha5 beta3 gamma2 but not alpha5 beta3 gamma3 receptors. Immunoprecipitation of [3H]L-655,708 binding sites from rat hippocampus with a gamma2-selective antibody yielded 19 +/- 4% of total benzodiazepine binding sites measured using [3H]Ro15-1788, whereas no specific binding was measured after immunoprecipitation with an anti-gamma3 antibody. Combinatorial immunoprecipitations of [3H]muscimol binding sites with anti-alpha5 and anti-gamma2 or anti-alpha5 and anti-gamma3 antibodies established the preferential expression of alpha5 gamma2 receptors, accounting for 22 +/- 2% of total rat hippocampal GABAA receptors. These observations provide pharmacological and structural evidence for the prevalence of alpha5 beta3 gamma2 GABAA receptors in rat hippocampus, despite the clustering of alpha5 and gamma3 loci on the same chromosome.  相似文献   

11.
GABAA receptors composed of human alpha 1 beta 2 gamma 2L, alpha 1 beta 2 gamma 2S, alpha 1 beta 3 gamma 2S, alpha 6 beta 3 gamma 2S, and alpha 5 beta 3 gamma 3 subunits as well as bovine alpha 1 beta 1 gamma 2L and alpha 1 beta 1 subunits were stably expressed in mammalian L(tk-) cells and transiently expressed in Xenopus oocytes. Effects of muscimol, ethanol, flunitrazepam, and pentobarbital on receptor function were compared for the two expression systems using a 36Cl- flux assay for cells and an electrophysiological assay for oocytes. Muscimol activated all receptors in both expression systems but was more potent for L(tk-) cells than oocytes; this difference ranged from 2.6-to 26-fold, depending upon subunit composition. The most pronounced differences between receptors and expression systems were found for ethanol. In L(tk-) cells, low (5-50 mM) concentrations of ethanol potentiated muscimol responses only with receptors containing the gamma 2L subunit. In oocytes, concentrations of 30-100 mM produced small enhancements for most subunit combinations. Flunitrazepam enhanced muscimol responses for all receptors except alpha 6 beta 3 gamma 2S and alpha 1 beta 1, and this enhancement was similar for both expression systems. Pentobarbital also enhanced muscimol responses for all receptors, and this enhancement was similar for L(tk-) cells and oocytes, except for alpha 6 beta 3 gamma 2S where the pentobarbital enhancement was much greater in oocytes than cells. The alpha 6 beta 3 gamma 2S receptors were also distinct in that pentobarbital produced direct activation of chloride channels in both expression systems. Thus, the type of expression/assay system markedly affects the actions of ethanol on GABAA receptors and also influences the actions of muscimol and pentobarbital on this receptor. Differences between these expression systems may reflect posttranslational modifications of receptor subunits.  相似文献   

12.
The vast molecular heterogeneity of brain gamma-aminobutyric acid type A (GABAA) receptors forms the basis for receptor subtyping. Using autoradiographic techniques, we established the characteristics of cerebellar granule cell GABAA receptors by comparing wild-type mice with those with a targeted disruption of the alpha6 subunit gene. Cerebellar granule cells of alpha6(-/-) animals have severe deficits in high affinity [3H]muscimol and [3H]SR 95531 binding to GABA sites, in agonist-insensitive [3H]Ro 15-4513 binding to benzodiazepine sites, and in furosemide-induced increases in tert-[35S]butylbicyclophosphorothionate binding to picrotoxin-sensitive convulsant sites. These observations agree with the known specific properties of these sites on recombinant alpha6beta2/3gamma2 receptors. In the presence of GABA concentrations that fail to activate alpha1 subunit-containing receptors, methyl-6,7-dimethoxy-4-ethyl-beta-carboline (30 microM), allopregnanolone (100 nM), and Zn2+ (10 microM) are less efficacious in altering tert-[35S]butylbicyclophosphorothionate binding in the granule cell layer of the alpha6(-/-) than alpha6(+/+) animals. These data concur with the deficiency of the cerebellar alpha6 and delta subunit-containing receptors in the alpha6(-/-) animals and could also account for the decreased affinity of [3H]muscimol binding to alpha6(-/-) cerebellar membranes. Predicted additional alterations in the cerebellar receptors of the mutant mice may explain a surplus of methyl-6,7-dimethoxy-4-ethyl-beta-carboline-insensitive receptors in the alpha6(-/-) granule cell layer and an increased diazepam-sensitivity in the molecular layer. These changes may be adaptive consequences of altered GABAA receptor subunit expression patterns in response to the loss of two subunits (alpha and delta) from granule cells.  相似文献   

13.
The functional role of the large heterogeneity in GABAA receptor subunit genes and its role in setting the properties of inhibitory synapses in the CNS is poorly understood. A kinetic comparison between currents elicited by ultra-rapid application with a piezoelectric translator of 1 mM GABA to mammalian cells transfected with cDNAs encoding distinct GABAA receptor subunits revealed that the intrinsic deactivation and desensitization properties depend on subunit combination. In particular, receptors containing alpha 6 with beta 2 gamma 2 subunits were endowed with a significantly slower deactivation as compared to those receptors containing alpha 1 with beta 2 gamma 2 subunits. While desensitization produced by prolonged GABA applications on alpha 1 beta 2 gamma 2 receptors was characterized by a rapid exponential decay followed by a slower decay and a steady state response, alpha 6 beta 2 gamma 2 receptors lacked desensitization. Furthermore, GABAA receptors lacking the gamma 2 subunit were characterized by a much larger non-desensitization component and a very rapid deactivation. Lastly, analysis of GABA-activated currents in cells cotransfected with alpha 1 and alpha 6 together with beta 2 gamma 2 subunit revealed unique kinetic properties. Our results suggest that distinct subunit composition confers specific deactivation and desensitization properties that may profoundly affect synaptic decay kinetics and the capability to sustain high frequency synaptic inputs.  相似文献   

14.
The effect of tyrosine protein kinase inhibitors on the swelling-induced chloride current (ICl-swelling) of dog atrial myocytes was studied using the whole-cell patch-clamp recording technique. Currents were measured during hyperpolarizing voltage ramps with potassium currents blocked by cesium. Osmolarity was varied using mannitol. Exposure to hypotonic solution (approximately 249 mosmol/kg) activated ICl-swelling. Hypertonic solution (approximately 363 mosmol/kg) was used to shrink swollen cells and turn off ICl-swelling. In studies on the acute effect of tyrosine protein kinase inhibitors each cell was swollen three separate times. Control, treatment, and washout ICl-swelling were compared. Genistein (50-80 microM) prevented reactivation of ICl-swelling without affecting cell size. The effect of genistein partially subsided upon washout. The effect of genistein on ICl-swelling was not mimicked by 80 microM daidzein, a related compound that does not inhibit tyrosine protein kinases. When intracellular adenosine 5'-O-(3-thiotriphosphate (ATP[gamma S]) was used, genistein did not prevent the reactivation of ICl-swelling. Intracellular ATP[gamma S] did not result in a persistent activation of ICl-swelling when cell size was returned to control. Acute exposure to 1 microM herbimycin A or 100 microM tyrphostin 51 did not prohibit the activation of ICl-swelling. A 24-h exposure to 1 microM herbimycin A did inhibit ICl-swelling. The results provide important clues regarding the activation mechanism for ICl-swelling and suggest that a tyrosine protein phosphorylation may be necessary, but not sufficient, for activation of ICl-swelling.  相似文献   

15.
1. Effects on the pinacidil-induced outward current of inhibitors of tyrosine kinases and phosphatases were investigated by use of a patch-clamp method in smooth muscle cells of the rabbit portal vein. 2. A specific tyrosine kinase inhibitor, genistein, inhibited the pinacidil-induced current in a concentration-dependent manner with an IC50 of 5.5 microM. Superfusion of Ca2+-free solution did not affect this inhibitory effect of genistein. At higher concentrations, genistein inhibited the voltage-dependent Ba2+ and K+ currents with IC50 values of > 100 microM and 75 microM respectively. Tyrphostin B46 (30 microM), a tyrosine kinase inhibitor, also inhibited the pinacidil-induced current by 70% of the control. 3. Sodium orthovanadate (100 microM), an inhibitor of tyrosine phosphatase, slightly but significantly enhanced both the pinacidil-induced and delayed rectifier K+ currents. Daidzein (100 microM), an inactive analogue of genistein, did not inhibit these currents. 4. Neither herbimycin A (1 microM), lavendustin A (30 microM), tyrphostin 23 (10 microM), which are also tyrosine kinase inhibitors, nor wortmannin (10 microM), a phosphatidylinositol 3-kinase inhibitor, had an effect on either the pinacidil-induced or delayed rectifier K+ currents. Epidermal growth factor (EGF; 1 microg ml(-1)) did not induce an outward current or enhance the pinacidil-induced current. 5. Pinacidil alone, in the cell-attached configuration, or pinacidil with GDP, in the inside-out configuration, activated a 42 pS channel in the smooth muscle cells of the rabbit portal vein. Genistein (30 microM) reduced the channel's open probability without inducing a change in unitary conductance at any holding potential (-30 to +20 mV). 6. In the inside-out configuration, genistein at 30 microM did not change the mean channel open time, but reduced the burst duration. At 100 microM genistein abolished channel opening. The inhibitory potencies with which 30 and 100 microM genistein acted on the unitary current of the ATP-sensitive K+ channel were similar to those seen in the whole-cell voltage-clamp configuration. 7. Although direct inhibitory actions of genistein on the ATP-sensitive K+ channels are not ruled out, our results suggest that a protein tyrosine kinase may play a role in the regulation of ATP-sensitive K+ channel activity in the rabbit portal vein.  相似文献   

16.
gamma-Aminobutyric acidA (GABA(A)) gated chloride ion channels were expressed from human recombinant cDNA using the baculovirus/Sf-9 insect cell expression system. The electrophysiological effects in whole-cell currents of 5-(4-piperidyl) isoxazol-3-ol (4-PIOL), a GABA(A) receptor partial agonist, were investigated on GABA(A) receptor complexes of alpha1beta2gamma2S subunits as well as a slightly modified construct of alpha1(valine 121)beta2gamma2S subunits. Here we report that (1)4-PIOL induces an inward whole-cell current in a concentration-dependent manner in both alpha1(val 121)beta2gamma2S and alpha1(ile 121)beta2gamma2S receptor subunit combinations. (2) The 4-PIOL induced whole-cell currents were more pronounced in alpha1(val 121)beta2gamma2S than in alpha1(ile 121)beta2gamma2S receptor subunit combinations. (3) 4-PIOL inhibited GABA-induced responses on alpha1(ile 121)beta2gamma2S and alpha1(val 121)beta2gamma2S receptor combinations with similar potency.  相似文献   

17.
Murine gamma-aminobutyric acid type A (GABAA) receptor beta 1, beta 2, and beta 3 subunits were expressed in Xenopus oocytes and studied using the two electrode voltage clamp technique. Although all three beta-subunits were unresponsive to GABA when expressed as homomers, the intravenous general anaesthetics pentobarbital, etomidate and propofol induced currents in beta 2 and beta 3 homomers. The pentobarbital-induced currents in beta 3 homomers showed a dose dependence with an ED50 of 89 +/- 8.9 microM and a Hill coefficient of 0.94 +/- 0.08. Zinc (50 microM) blocked (61.1 +/- 5.6% of control) and 200 microM lanthanum potentiated (139 +/- 8.6% of control) the pentobarbital-induced current. This current was also blocked by picrotoxin but was insensitive to the GABAA receptor antagonist bicuculline. These observations indicate that the full expression of the agonistic action of GABA requires the presence of an alpha-subunit, in contrast to the agonistic action of intravenous general anesthetics, where the presence of a beta2 or beta 3-subunit is sufficient. The difference in the agonistic action of intravenous anaesthetics among these highly homologous beta-subunits suggests that the beta-subunit homomeric receptors may be useful to further define the molecular sites of action of intravenous general anaesthetics and other functional domains on GABAA receptors.  相似文献   

18.
The interactions of the inhalation anesthetic agent isoflurane with ligand-gated chloride channels were studied using transient expression of recombinant human receptors in a mammalian cell line. Isoflurane enhanced gamma-aminobutyric acid (GABA)-activated chloride currents in cells that expressed heteromeric GABAA receptors consisting of combinations of alpha 1 or alpha 2, beta 1, and gamma 2 subunits and in cells that expressed receptors consisting of combinations of only alpha and beta subunits. Receptors consisting of alpha 2 and gamma 2 subunits were poorly expressed but were sensitive to isoflurane. Receptors consisting of beta 1 and gamma 2 subunits were not expressed. Isoflurane also enhanced glycine-activated chloride currents through homomeric alpha glycine receptors but did not enhance GABA currents in cells expressing homomeric rho 1 receptors. These results show that not all ligand-gated chloride channel receptors are sensitive to isoflurane and, therefore, that the anesthetic interacts with specific structural determinants of these ion channel proteins.  相似文献   

19.
We have investigated the effects of protein tyrosine kinases (PTKs) inhibitors on high-threshold voltage activating (HVA) calcium currents in CA1 pyramidal neurones, whole-cell patch-clamp recorded from rat hippocampal slices. Genistein (100 microM) and tyrphostin B42 (100 microM), two PTKs inhibitors, reduced the steady-state barium current (IBa). On the other hand, daidzein and genistin (100 microM), two inactive analogues of genistein, had no effect on IBa amplitude. The inhibition induced by genistein was more pronounced at negative potentials. In order to characterize the calcium channels subtypes inhibited by PTKs inhibitors, we examined the effect of genistein in the presence of different calcium channel blockers. When L-type calcium channels were blocked by nifedipine, genistein induced a strong inhibition of the nifedipine-resistant IBa, suggesting an effect on non-L-type channels. Genistein did not antagonize the depressant effect of omega-Conotoxin-GVIA, a selective N-type calcium channel blocker, suggesting that N-type channels were not blocked by genistein. omega-Conotoxin-MVIIC (3-10 microM), a selective P/Q-type calcium channel blocker, greatly antagonized the depressant effect of genistein. Our results suggest that PTKs inhibitors reduce P-/Q-type, but not L- or N-types calcium currents in neurones of the CNS. The possible modulation of calcium channels by endogenous PTKs is discussed.  相似文献   

20.
Genistein, an isoflavone inhibitor of tyrosine-specific protein kinases, was shown to specifically block the 22Na+ influx through voltage-sensitive Na+ channels in cultured rat brain neurons, whereas other tyrosine kinase antagonists such as lavendustin A, compound 5, tyrphostin A47 and an erbstatin analog were inactive at concentrations known to block kinase activity in other neuronal systems. Dose-response curves for genistein indicated a half-maximum effect at 60 microM. Daidzein, an inactive analog of genistein, had a similar inhibitory effect on the 22Na+ influx with a half-maximum effect at 195 microM. The time course of genistein action was rapid, because maximum effect on 22Na+ influx was obtained in less than 20 s at 100 microM. Analysis of Na+ currents by the whole-cell recording technique showed that 20 microM genistein reduced the sodium current and shifted the voltage dependence of both activation and inactivation curves. No competition with [3H]saxitoxin binding was observed, whereas the binding of [3H]batrachotoxinin A 20-alpha-benzoate to rat brain synaptosomal membranes was partially inhibited, which suggested a direct or allosteric interaction with neurotoxin binding site 2. These data taken together clearly indicate that the inhibition of voltage-sensitive sodium channels by genistein is not mediated by tyrosine kinase inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号