首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
云南某低品位难选铁锡矿中铁、锡品位分别为30.91%和0.23%,主要回收矿物为磁铁矿和锡石。为充分回收矿石中的有价组分,依据原矿性质,确定采用磁选选铁—浮选选硫—脱泥—锡石选别(重选+浮选)的工艺流程进行选矿试验研究。原矿经过1粗1精两段磁选可以获得铁品位60.69%、铁回收率78.63%的弱磁精矿。弱磁尾矿经过1粗1精2扫选硫后,选硫尾矿中硫品位降至0.46%,硫精矿锡作业回收率仅为6.88%。将浮硫尾矿筛分为+0.043 mm和-0.043 mm粒级样,+0.043 mm粒级样通过摇床能获得锡品位6.48%、锡作业回收率52.54%的摇床精矿产品; -0.043 mm粒级样经水析脱除-0.01 mm细泥后,以水杨羟肟酸+GZ为锡石捕收剂,2号油为起泡剂,闭路浮选最终可获得锡品位5.69%、锡作业回收率70.23%的锡精矿产品,尾矿中锡品位降至0.12%。全流程试验最终获得铁品位60.69%、铁回收率78.63%的磁铁精矿,锡品位5.92%、锡回收率31.93%的锡精矿,总尾矿中锡品位降至0.14%,实现了该铁锡矿资源的综合回收。  相似文献   

2.
对某矿山代表性矿样进行了矿石性质及选矿工艺试验研究,进行了单一磁选、焙烧-磁选、磁选-反浮选、焙烧-磁选-反浮选等方案对比。结果表明,焙烧-磁选-反浮选能获得合格铁精矿,在最终磨矿细度-0.037 mm粒级占75%时,对品位32.50%的原矿经过三段磁选、三段浮选,可获得精矿铁品位59.94%、铁回收率72.84%、尾矿品位16.13%的选别指标,精矿中主要杂质SiO2含量8.47%。  相似文献   

3.
首先对包钢选矿厂磁选铁精矿反浮选尾矿进行了弱磁选选铁磨矿细度试验和浮稀土粗选药剂用量试验,然后对试样进行了全流程试验。试验结果表明,采用3段阶段磨矿-弱磁选选铁、1粗3精浮选选稀土、第3段精选稀土的尾矿返回精选2流程处理现场反浮选尾矿,最终获得了REO品位为58.12%、REO回收率为64.74%、含铁5.70%的稀土精矿和铁品位为64.47%、铁回收率为56.51%、稀土REO品位为1.65%的铁精矿。  相似文献   

4.
刘兴华  陈雯 《金属矿山》2014,43(5):64-69
为给新疆某低品位细粒磁铁矿的开发利用提供合理的选矿工艺,针对矿石性质的特点,进行了阶段磨矿、阶段弱磁选工艺和阶段磨矿、阶段弱磁选、阳离子反浮选工艺试验。结果表明:①采用3段磨矿、4次弱磁选的阶段磨选工艺流程处理该矿石,在三段磨矿细度为-0.038 mm占95.18%的情况下,可获得铁品位为66.48%、铁回收率为78.79%的铁精矿;采用2阶段磨矿弱磁选、弱磁精矿2阳离子反浮选、反浮选尾矿再磨-弱磁选抛尾后再返回反浮选的流程处理该矿石,在反浮选尾矿再磨细度为-0.038 mm 占96.34%的情况下,可获得铁品位为69.76%、铁回收率为78.51%的铁精矿。②单一弱磁选流程虽然简洁,但弱磁选、阳离子反浮选联合流程在最后一段磨矿量(相对原矿)显著下降22.99个百分点的情况下,最终精矿铁品位却大幅提高3.28个百分点。  相似文献   

5.
许继龙 《现代矿业》2022,(5):131-133
梅山铁矿为提高选矿降磷工艺铁回收率,对降磷工艺弱磁(1粗1扫)—强磁(1粗1扫)工艺进行了磁场强度试验研究。试验结果表明:在磨矿细度-0.074 mm66.65%的条件下,采用1粗1扫弱磁选、弱磁选尾矿再分别进行强磁1粗1扫与强磁1粗2扫的选别工艺;强磁两段扫选比一段扫选选别指标更优,得到的铁精矿不仅满足铁品位大于56.7%的要求,而且精矿产率提高了1.19个百分点,铁回收率提高了1.76个百分点。  相似文献   

6.
云南某铁尾矿粒度较细,-0.019 mm占53.16%,铁品位24.93%,铁主要以赤褐铁的形式存在,较难选别。为回收利用其中的铁,进行选矿试验。结果表明,原矿经1粗2精1扫强磁选抛尾—-0.037 mm分级—+0.037 mm摇床重选选别,可获得铁精矿品位51.07%、回收率40.90%的良好指标,可供确定最终工艺流程参考。  相似文献   

7.
河北某难选赤铁矿强磁选—反浮选试验研究   总被引:1,自引:0,他引:1  
采用阶段磨矿—阶段强磁选—强磁选精矿反浮选工艺流程对铁品位不到25%的河北某难选赤铁矿石进行选矿试验,在-0.074mm占96.20%的最终磨矿细度下,取得了精矿产率为25.43%,铁品位为66.27%,铁回收率为68.49%,总尾矿铁品位为10.39%的选别指标。  相似文献   

8.
滦县司家营贫赤铁矿选矿试验研究   总被引:8,自引:5,他引:3  
对滦县司家营贫赤铁矿进行了选矿试验研究。采用阶段磨矿、弱磁选-强磁选-阴离子反浮选流程选别该矿石,最终可以取得铁精矿品位65.80%、精矿产率22.97%、精矿回收率69.10%、总尾矿品位8.81%的指标。  相似文献   

9.
饶宇欢  罗仙平  李磊  陶飞 《现代矿业》2014,30(2):155-157
周油坊铁矿生产中浮选尾矿铁含量达22%以上,直接排入总尾中,造成了资源浪费。为降低其尾矿品位,提高选矿回收率,试验采用离心选矿机来降低浮选尾矿中的铁含量。现场试验结果表明:采用6台SLon-离心选矿机经过1次选别,可使铁精矿产率提高2.49个百分点,回收率提高2.43个百分点,每天可回收近80 t的矿粉,经济效益、环保效益显著。  相似文献   

10.
某矿山复杂难选铁矿石铁品位达43.41%,FeO、Fe_2O_3含量分别为18.93%和40.99%,硫品位为3.40%,铁、硫是矿石中有回收价值的元素。为提高现场生产指标进行了选矿试验。结果表明,2~#样可行性较好,阶段磨矿—弱磁选—脱硫浮选—强磁选流程较优;2~#样采用阶段磨矿—弱磁选—脱硫浮选—强磁选流程进行试验,可获得铁品位66.09%、含硫0.09%、铁回收率72.11%的弱磁选精矿;硫品位23.13%、回收率91.39%的硫精矿;铁品位27.06%、含硫0.06%、铁回收率15.01%的强磁选精矿;强磁选精矿进行磁化焙烧—弱磁选试验,获得了 TFe品位为56.05%、作业回收率为92.77%的铁精矿;现场按阶段磨矿—弱磁选—脱硫浮选—强磁选—强磁选精矿磁化焙烧—弱磁选流程进行改造,2~#样工业试验精矿铁品位65.91%、含硫0.17%、铁回收率81.67%,新流程指标优越性明显。  相似文献   

11.
铁品位为26.06%的铜硫浮选尾矿中残存有少量难浮磁黄铁矿,弱磁选回收其中的磁铁矿时,该部分磁黄铁矿因磁性较强而进入铁精矿中,导致铁精矿硫含量严重超标。为了获得合格铁精矿,对铜硫浮选尾矿弱磁选铁精矿进行了反浮选脱硫试验研究。结果表明,采用1粗1精1扫、中矿顺序返回闭路流程处理铁品位为63.14%、硫含量达2.05%弱磁选精矿,最终获得了铁品位为64.53%、含硫0.28%、铁回收率为47.09%的合格铁精矿。弱磁选铁精矿反浮选脱硫效果良好,可作为现场改造的依据。  相似文献   

12.
针对品位为57.10%的硫酸渣原渣经过螺旋溜槽重选得到铁品位超过62%的铁精矿后,尾矿铁品位仍较高且铁回收率只有47.95%的问题,开展了对硫酸渣重选尾矿采用离心选矿机重选、磁选—浮选和脱泥—浮选,3种方案进一步回收铁的试验研究。试验结果表明:采用脱泥—浮选方案效果最佳,尾矿提铁可获得铁品位为59.97%,铁回收率为42.65%的铁精矿,从而使硫酸渣综合精矿品位达到了61.52%,综合铁回收率达到了70.15%。  相似文献   

13.
安徽某赤铁矿选厂生产现场选矿工艺中螺旋溜槽重选流程给矿粒度较细,-0.074 mm占77.84%,铁主要分布于0.045~0.074 mm粒级中;精矿铁品位62.39%、作业回收率9.89%,指标较差。为提高铁精矿质量和回收率,进行重选流程改造试验。结果表明,在最佳条件下,弱磁选—中磁选—混合磁精矿离心机重选全流程试验可获得作业产率34.13%、铁品位65.49%、作业回收率60.78%的合格铁精矿,较现场重选指标显著改善。该磁选—重选工艺流程可代替原螺旋溜槽重选流程。  相似文献   

14.
针对某赤铁矿选厂实际生产运行时铁精矿品位较低而尾矿铁含量偏高的问题,在分析原矿性质的基础上,对两段磨矿分级—弱磁选—强磁选—强磁精矿1粗1精3扫反浮选选矿全流程进行考察,以查明问题原因。结果表明,因原矿性质相比设计时变化较大,磁性铁含量降低,赤(褐)铁增加到83.15%,造成一、二段强磁选作业处理量大幅增加,强磁选尾矿铁含量升高;二段旋流器溢流细度较粗(-0.074 mm 86%),导致反浮选精矿铁品位较低。提出加强研究原矿性质、合理配矿,一段、二段强磁选作业各增加1台强磁选机,改造二段旋流器给矿泵、增大反浮选给矿细度等优化建议,以改善选矿技术指标。  相似文献   

15.
对广西某选铜尾矿进行了详细的选矿试验研究,根据矿石特性,采用磁选—铜硫混浮再分离—浮选尾矿重选工艺流程,有效地综合回收了尾矿中的铁、铜、硫、锡有价元素,最终获得的试验指标为:铁精矿铁品位63.66%、铁回收率16.89%,铜精矿铜品位16.70%、铜回收率40.06%,硫精矿硫品位36.77%、硫回收率57.05%,锡精矿锡品位24.59%、锡回收率35.16%。  相似文献   

16.
青海某磁铁精矿铁品位达65.46%,主要杂质Si O2、Al2O3含量分别为5.77%和2.09%,主要脉石矿物为石英、绿泥石、云母、长石、钛铁矿等,+75μm粒级铁品位仅为45.07%,主要以磁铁矿连生体形式存在。为确定以该磁铁精矿为原料生产超纯铁精矿的可行性及合理选矿工艺,进行了选矿试验研究。结果表明,试样在磨矿细度为D90=21.39μm的情况下,进行1次弱磁选(23.87 k A/m)、1次弱磁扫选(318.22 k A/m),弱磁选精矿以苛性淀粉为抑制剂、十二胺为捕收剂进行1粗1精反浮选,反浮选尾矿与弱磁扫选精矿合并,最终获得铁品位为71.82%,铁回收率为61.86%,Si O2、Al2O3含量分别为0.24%、0.18%的超纯铁精矿,以及铁品位为68.14%、铁回收率为36.74%的普通铁精矿。  相似文献   

17.
孙炳泉  高春庆 《金属矿山》2015,44(11):57-61
国外某铁矿石铁品位为31.92%、SiO2含量为46.44%,矿石矿物嵌布粒度微细。为探索在较粗磨矿细度条件下获得高质量铁精矿的高效选矿工艺,对其进行了选矿流程试验。实验室试验结果表明:采用阶段磨矿-弱磁选-磁选柱分选工艺,当磨矿细度达到-0.043 mm占95%时,才能获得铁品位大于68%、硅含量小于5%的高质量铁精矿;而采用阶段磨矿-弱磁选-反浮选工艺,当磨矿细度放粗至-0.076 mm占90%时,即可获得铁品位大于68%、硅含量小于5%的铁精矿,且可减少三段磨矿量45%以上。扩大连续试验结果表明,原矿经两段阶段磨矿 (-0.076 mm占90%)-弱磁选-反浮选-反浮选尾矿脱水后再磨(-0.038 mm占95%)再选流程选别,可获得精矿铁品位68.12%、SiO2含量4.59%、铁回收率70.02%、磁性铁回收率96.83%的指标,实现了该矿石的高效分选。  相似文献   

18.
某镜铁矿选矿厂原采用连续磨矿—单一强磁选流程,选别指标不理想,为此对其进行了阶段磨矿、强磁—反浮选流程试验研究,取得了精矿铁品位49.78%、回收率76.68%的良好选别指标。试验结果表明,磨矿粒度是影响选别指标的主要原因,阳离子反浮选对提高铁精矿品位和回收率有利。  相似文献   

19.
某镜铁矿选矿厂原采用连续磨矿—单一强磁选流程,选别指标不理想,为此对其进行了阶段磨矿、强磁—反浮选流程试验研究,取得了精矿铁品位49.78%、回收率76.68%的良好选别指标。试验结果表明,磨矿粒度是影响选别指标的主要原因,阳离子反浮选对提高铁精矿品位和回收率有利。  相似文献   

20.
内蒙古某铁矿选铁尾矿TiO_2含量2.65%,TFe含量10.18%,钛主要赋存于钛铁矿和钛磁铁矿中,钛在细粒级有明显的富集现象,-0.5 mm粒级TiO_2品位为3.09%。为确定钛回收流程进行了选矿试验。试验结果表明,试样采用隔粗(+0.5 mm)筛分—筛下螺旋溜槽预抛尾—预抛尾精矿磨矿—弱磁选选铁—弱磁选尾矿螺旋溜槽2次粗选—2次粗选精矿再磨矿—摇床1粗1精1精扫重选流程处理,最终获得产率0.95%、TFe品位54.32%、TFe回收率5.07%的铁精矿,产率1.92%、TiO_2品位39.52%、TiO_2回收率28.63%的摇床精选钛精矿,以及产率0.20%、TiO_2品位31.83%、TiO_2回收率2.40%的摇床精扫选钛精矿,钛精矿总产率2.12%、TiO_2品位38.79%、TiO_2回收率31.03%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号