首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
探讨了芦岭矿Ⅱ一采区瓦斯涌出量与回采强度的关系;研究了瓦斯涌出量与回采煤层厚度的相应变化特征;通过对比分析澄清了相对瓦斯涌出量、绝对瓦斯涌出量之间及其与煤层埋藏深度的关系.  相似文献   

2.
用地质观点研究煤层瓦斯赋存已获得实践检验,瓦斯的赋存及涌出与地质因素密不可分.在收集并整理黄陵二号煤矿井田地质资料和瓦斯资料的基础上,分析了井田地质构造特征,结合瓦斯地质理论,研究地质构造、煤层顶底板岩性、煤层埋藏深度、水文地质条件等因素对瓦斯赋存的影响,融合矿井勘探及生产期间实测瓦斯含量数据,采用瓦斯地质统计法建立回采面绝对瓦斯涌出量与煤层瓦斯含量的关系式,并以此对矿井未采区的瓦斯涌出量进行了预测.  相似文献   

3.
阳泉三矿大采长综放工作面瓦斯涌出特征分析   总被引:7,自引:0,他引:7  
大采长综放工作面单位时间内瓦斯涌出量增大,经常造成工作面回风隅角和回风巷瓦斯质量浓度超限.通过分析综放工作面瓦斯涌出源,可以了解其瓦斯涌出特征.对阳泉三矿大采长K8206综放工作面初采期和回采期的瓦斯涌出规律的分析可知,初采期瓦斯涌出量具有大幅度波动性,其原因主要为采空区瓦斯不断地、周期性地涌入.正常回采期,只要高抽巷的抽放负压足够大,邻近层瓦斯涌入工作面的问题就能解决;而大采长综放工作面本煤层瓦斯涌出量增大,则需要增加通风量或者采用新的通风方式.  相似文献   

4.
大采长综放工作面单位时间内瓦斯涌出量增大,经常造成工作面回风隅角和回风巷瓦斯质量浓度超限.通过分析综放工作面瓦斯涌出源,可以了解其瓦斯涌出特征.对阳泉三矿大采长K8206综放工作面初采期和回采期的瓦斯涌出规律的分析可知,初采期瓦斯涌出量具有大幅度波动性,其原因主要为采空区瓦斯不断地、周期性地涌入.正常回采期,只要高抽巷的抽放负压足够大,邻近层瓦斯涌入工作面的问题就能解决;而大采长综放工作面本煤层瓦斯涌出量增大,则需要增加通风量或者采用新的通风方式.  相似文献   

5.
用多元线性回归分析法预测矿井深部瓦斯涌出量   总被引:4,自引:0,他引:4  
利用常村井田 2 1采区一分层回采时实测的绝对瓦斯涌出量数据和采区内 1 2个钻孔的原始数据 ,用多元线性回归分析法 ,找出了控制瓦斯涌出量的主要地质因素是煤层厚度和煤层埋深 .根据回归方程 ,计算出矿井瓦斯梯度为每百米增加 0 .67m3/min ,并对矿井深部一分层开采时的瓦斯涌出量进行了预测 .以 5m3/min绝对瓦斯涌出量等值线为界 ,把整个井田划分为低瓦斯区和中高瓦斯区 ,指出在矿井深部煤层开采时 ,必须提前制定出防止瓦斯事故发生的有效措施  相似文献   

6.
用多元线性回归分析法预测矿井深部瓦斯涌出量   总被引:2,自引:0,他引:2  
利用常村井田21采区一分层回采时实测的绝对瓦斯涌出量数据和采区内12个钻孔的原始数据,用多元线性回归分析法,找出了控制瓦斯涌出量的主要地质因素是煤层厚度和煤层埋深.根据回归方程,计算出矿井瓦斯梯度为每百米增加0.67*!m3/min,并对矿井深部一分层开采时的瓦斯涌出量进行了预测.以5*!m3/min绝对瓦斯涌出量等值线为界,把整个井田划分为低瓦斯区和中高瓦斯区,指出在矿井深部煤层开采时,必须提前制定出防止瓦斯事故发生的有效措施.  相似文献   

7.
中国采煤工作面瓦斯涌出规律及其控制研究   总被引:46,自引:6,他引:40  
将采煤工作面瓦斯来源划分为煤壁、采落煤和采空区3部分,并给出了各部分瓦斯涌出量的计算公式,研究了回采过程,煤层群不同的开采顺序以及厚煤层分层开采时的瓦斯涌出 述了中国煤矿采矿工作面采用不同的通风系统、脉冲通风以及瓦斯抽放等控制瓦斯涌出的原理与技术的新成果,介绍了瓦斯涌出量达150m^3/min的综采放顶煤工作面瓦斯控制技术实例。  相似文献   

8.
基于GA-LSSVR算法的回采工作面瓦斯涌出量预测   总被引:1,自引:1,他引:0  
针对回采工作面瓦斯涌出量问题的小样本、非线性、影响因素关系复杂等特点,采用遗传-最小二乘支持向量回归算法对瓦斯涌出量进行预测,利用定量方法进行分析,避免了定性分析的局限性,有效提高了预测的精度。该模型首先利用遗传算法对最小二乘支持向量回归机中的参数进行训练和优化,然后运用遗传-最小二乘支持向量回归模型对测试样本进行了回采工作面瓦斯涌出量测试。测试结果表明:与支持向量回归机以及最小二乘支持向量回归机的预测值相比,遗传-最小二乘支持向量回归的回采工作面瓦斯涌出量预测可靠性和精确性更高。  相似文献   

9.
近距离突出煤层群工作面受上下邻近煤层卸压瓦斯的影响,致使回采工作面瓦斯涌出量大、工作面回风隅角及回风巷中的甲烷传感器频繁报警,瓦斯治理消耗大量的人力、物力和时间,严重制约了矿井的安全生产。通过对几种瓦斯治理方案进行分析论证,得出将整个煤层群作为一个治理单元,统筹考虑,将煤层厚度、瓦斯含量相对较小的弱突出煤层作为关键保护层,配合打钻进行立体式抽采,实现上下递进保护,最大限度地抽采邻近煤层的卸压瓦斯的方案。现场实践结果表明,保护层工作面在回采期间瓦斯抽采率高达90%以上,回风隅角瓦斯浓度降至0.6%以下,回风巷风流中瓦斯浓度降至0.2%以下,工作面月平均回采长度由原来的120 m提高至200 m。同时,从根本上解决了被保护层工作面回采期间瓦斯带来的安全威胁。  相似文献   

10.
矿井瓦斯赋存规律及涌出量预测是矿井瓦斯治理的重要理论依据.深入研究分析了金发煤矿瓦斯地质赋存规律控制因素,定性分析了金发煤矿地质构造、煤层上覆基岩厚度、顶底板岩性、水文地质条件等控制要素,确定埋深是影响矿井C8、C9煤瓦斯含量最重要因素.结合矿井实测瓦斯涌出量,预测了煤与瓦斯区域突出危险性.结果表明:煤层埋深与瓦斯含量呈正相关关系;瓦斯压力是判定该矿C8、C9煤瓦斯突出危险性的最重要指标,矿界内煤层瓦斯压力大于0.74 MPa的区域具有突出危险性,煤矿的突出危险区主要在矿界西北边靠近矿2坐标点附近.  相似文献   

11.
利用瓦斯地质数学模型法建立了工作面瓦斯涌出量数学模型,预测了未采区工作面瓦斯涌出量.瓦斯涌出量等值线大体上沿北东方向展布,并具有随煤层埋深增加而增大的总体趋势.依据工作面瓦斯涌出量构成及瓦斯涌出量预测结果,提出了工作面瓦斯治理的两套措施,即采空区瓦斯抽放和下行风加专用排瓦斯巷.  相似文献   

12.
利用瓦斯地质数学模型法建立了工作面瓦斯涌出量数学模型,预测了未采区工作面瓦斯涌出量.瓦斯涌出量等值线大体上沿北东方向展布,并具有随煤层埋深增加而增大的总体趋势.依据工作面瓦斯涌出量构成及瓦斯涌出量预测结果,提出了工作面瓦斯治理的两套措施,即采空区瓦斯抽放和下行风加专用排瓦斯巷.  相似文献   

13.
高瓦斯煤层开采的新思路及待研究的主要问题   总被引:13,自引:0,他引:13  
提出了解决高瓦斯煤层开采的新思路:在一个密闭的空间中实现瓦斯与煤同采,使采煤工作在一个即能密封又能开放的空间中进行;当采煤机械高速运行、瓦斯涌出量很大量,回采工作面上下巷道密闭,使回采工作空间的瓦斯浓度保持在30%以上,完全处于不能产生爆炸的环境中,使机械设备的效率能够得到充分发挥,实现高产高效安全生产的目标;当工作面出现故障、必须停采处理时,打开工作面上下巷道的风门,恢复通风。煤与瓦斯同采是高瓦斯煤层的一项全新的开采方式,需要对其主要问题进行深入的研究。  相似文献   

14.
煤巷掘进过程中煤层瓦斯流动的分析解   总被引:2,自引:0,他引:2  
通过对煤巷掘进过程中煤层瓦斯流动及涌出规律的研究,提出了煤巷掘进时煤层瓦斯压力分布分析解,以及巷道煤壁瓦斯涌出量的解析式。给出了煤层中瓦斯近于单向流动时的煤巷已掘出长度的计算式。导出的结果是对煤巷掘进长度较短时瓦斯涌出规律研究的补充。  相似文献   

15.
当采掘工作面遇有岩浆岩破坏煤系和煤层时,地质条件尤为复杂,采用常规的矿山统计法和瓦斯含量法预测瓦斯涌出量难以取得理想的结果.作者从矿井地质综合分析入手,采用BP神经网络的方法建立了适用于矿井未采区瓦斯涌出量的预测模型,分别用48个4-2煤层、40个7-2煤层钻孔点的煤层瓦斯质量体积、煤层埋藏深度、煤质、火成岩分布、顶底板砂泥岩比值等数据作为输入层。预测地质条件相对复杂矿井的瓦斯涌出量.经已采区实测值与预测值比较分析认为.预测结果可信.  相似文献   

16.
当采掘工作面遇有岩浆岩破坏煤系和煤层时,地质条件尤为复杂,采用常规的矿山统计法和瓦斯含量法预测瓦斯涌出量难以取得理想的结果.作者从矿井地质综合分析入手,采用BP神经网络的方法建立了适用于矿井未采区瓦斯涌出量的预测模型,分别用48个4-2煤层、40个7-2煤层钻孔点的煤层瓦斯质量体积、煤层埋藏深度、煤质、火成岩分布、顶底板砂泥岩比值等数据作为输入层,预测地质条件相对复杂矿井的瓦斯涌出量.经已采区实测值与预测值比较分析认为,预测结果可信.  相似文献   

17.
煤层瓦斯质量体积(含量)是煤层瓦斯主要参数之一,是矿井进行瓦斯涌出量预测、煤与瓦斯突出预测和瓦斯抽放设计的重要依据.只有摸清矿井瓦斯赋存规律,才能对采掘面瓦斯抽放制定合理的技术措施.为避免石门沟煤矿瓦斯治理的盲目性,笔者通过分析煤层瓦斯质量体积与埋藏深度的关系,并结合矿井地质构造,研究了煤层瓦斯赋存规律,总结得出石门沟煤矿3号煤层瓦斯质量体积受地质构造控制,在远离地质构造区域,瓦斯质量体积与埋藏深度呈正相关,并推出其关系式,为矿井瓦斯治理提供可靠数据.  相似文献   

18.
石门沟煤矿3号煤层瓦斯赋存规律探究   总被引:4,自引:2,他引:2  
煤层瓦斯质量体积(含量)是煤层瓦斯主要参数之一,是矿井进行瓦斯涌出量预测、煤与瓦斯突出预测和瓦斯抽放设计的重要依据.只有摸清矿井瓦斯赋存规律,才能对采掘面瓦斯抽放制定合理的技术措施.为避免石门沟煤矿瓦斯治理的盲目性,笔者通过分析煤层瓦斯质量体积与埋藏深度的关系,并结合矿井地质构造,研究了煤层瓦斯赋存规律,总结得出石门沟煤矿3号煤层瓦斯质量体积受地质构造控制,在远离地质构造区域,瓦斯质量体积与埋藏深度呈正相关,并推出其关系式,为矿井瓦斯治理提供可靠数据.  相似文献   

19.
《焦作工学院学报》2015,(4):445-450
邻近煤层受采动影响瓦斯排放率与层间距的数值关系尚不明确,在预测和确定瓦斯排放率时,工作量大且精度难于保证。针对上述问题,根据邻近层瓦斯排放率与层间距的关系曲线,进行栅格化处理,得到了邻近煤层瓦斯排放率与层间距之间对应的原始数据。根据原始数据,对邻近煤层瓦斯排放率进行数值模拟,分别建立了上邻近层、缓倾斜煤层下邻近层和倾斜、急倾斜煤层下邻近层瓦斯排放率数学模型,并且对数学模型进行了误差分析和精度考察。研究表明,建立的邻近层瓦斯排放率预测数学模型精度高,可以为邻近层瓦斯涌出量预测、突出煤层开采保护层的条件选择和开采保护层的保护效果检验工程应用方面提供便利。  相似文献   

20.
国投新登煤业前期采掘过程中矿井瓦斯涌出量较低,但随着开采深度的增加,瓦斯含量及压力具有明显上升的趋势,矿井迫切需要搞清深部区域的瓦斯赋存规律.结合矿井实际情况针对这一问题进行了研究,分析了影响深部区域瓦斯涌出的各种因素;研究了煤层瓦斯含量与埋藏深度的关系,绘制了31采区北翼的瓦斯含量等值线图;结合《防治煤与瓦斯突出规定》对该区的瓦斯突出危险程度进行了评价,划分出了突出危险区,并给出了防治煤与瓦斯突出的技术措施.现场生产表明,研究结果符合矿井实际情况,对矿井安全生产具有一定的指导意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号