首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The effect of δ phase on the hydrogen embrittlement (HE) sensitivity of Inconel 718 was investigated by conducting notch tensile tests. Notch tensile specimens with various precipitation morphologies of δ phase were prepared with different heat treatments, and hydrogen was charged into the tensile specimens before tensile tests via a cathodic charging process. The loss of notch tensile strength (NTS) due to the charged hydrogen was used to evaluate the hydrogen embrittlement sensitivity. The results show that δ phase has deleterious effect on NTSs, and the fracture of hydrogen-charged specimens initiated near the notch surfaces. The loss of NTS caused by precharged hydrogen can be greatly decreased by dissolving δ phase. δ-free Inconel 718 alloy is proposed for the applications in hydrogen environments.  相似文献   

2.
The effect of δ phase on the hydrogen embrittlement (HE) sensitivity of Inconel 718 was investigated by conducting notch tensile tests. Notch tensile specimens with various precipitation morphologies of δ phase were prepared with different heat treatments, and hydrogen was charged into the tensile specimens before tensile tests via a cathodic charging process. The loss of notch tensile strength (NTS) due to the charged hydrogen was used to evaluate the hydrogen embrittlement sensitivity. The results show that δ phase has deleterious effect on NTSs, and the fracture of hydrogen-charged specimens initiated near the notch surfaces. The loss of NTS caused by precharged hydrogen can be greatly decreased by dissolving δ phase. δ-free Inconel 718 alloy is proposed for the applications in hydrogen environments.  相似文献   

3.
We investigated the effects of precipitation phases on the hydrogen embrittlement (HE) sensitivity of Inconel 718 by means of tensile tests. Hydrogen was charged into the test specimens via a cathodic charging process prior to the tensile tests. Various heat treatments were applied to conventionally aged specimens to fabricate specimens with different precipitation conditions for the γ″ phase and the δ phase. For each precipitation condition, we fabricated two specimens, one of which was charged with hydrogen before the tensile test. All specimens were tensioned under identical tensile conditions. The percent loss of the reduction of area (RA) caused by pre-charged hydrogen was used to assess HE sensitivity. Both the δ phase and the γ″ phase were found to play significant roles in altering HE sensitivity of Inconel 718. When these phases were totally dissolved, the HE sensitivity of the alloy was very low. The percent loss of RA decreased along with a decrease in the fractional volume of γ″. The δ-free aged alloy had greatly enhanced HE resistance, the same level as that of conventionally annealed alloy, and its strength was equal to that of the conventionally aged alloy. Fracture origins noted on the specimens were located on the surface layers and displayed brittle cleavage when pre-charged hydrogen was utilized. Local transgranular cleavages initiated from the δ/matrix were also observed in conventionally aged specimens, where there was a presence of pre-charged hydrogen. Therefore, the δ phase was considered to promote HE by initializing micro-cracks from δ/matrix interfaces. Since the d-free aged alloy has both good strength and good ductility, we propose that it is advantageous for fabricating some hydrogen-containing parts.  相似文献   

4.
A comparison was made of the endurance of plated chromium and chromized coatings in a high temperature erosion atmosphere, produced by burning propellants in an erosion test apparatus. The substrate materials used for these coatings were a nickel-base alloy (Inconel 718), an FeNi-base alloy (CG-27), H11 tool steel and CrMoV steel. The erosivity was obtained from weight loss determinations. Chromizing provides a better erosion-resistant surface for Inconel 718 than chromium plating does, whereas chromium plating provides a better resistance to erosion for CG-27, H11 and CrMoV steels than chromizing does. Optical metallography, scanning electron microscopy and energy-dispersive analysis with X-rays confirm these findings.  相似文献   

5.
对高含H2S/CO2酸性油气田封隔器材料-Inconel718镍基合金进行固溶处理和时效处理,研究不同热处理工艺条件下合金的组织、力学性能、耐蚀性能之间的关系。结果表明:随着固溶温度的升高,δ相不断溶入基体。材料经时效处理后析出第二相γ″相,硬度和强度明显高于固溶处理的样品,1000℃固溶+720℃×8h→50℃/h620℃×8h时效处理的样品硬度和强度达到最大值。高温高压H2S/CO2介质中挂片实验的结果表明,不同热处理的Inconel718合金均具有良好的耐腐蚀性能,经固溶处理的材料耐腐蚀性略优于经固溶+时效处理的材料。高温高压H2S/CO2应力腐蚀实验的结果表明,Inconel718没有发生应力腐蚀开裂迹象。综合考虑耐蚀性能和力学性能,确定Inconel718合金的最佳热处理工艺为:1000℃固溶1h+720℃×8h→50℃/h620℃×8h时效。  相似文献   

6.
We investigated the effects of precipitation phases on the hydrogen embrittlement (HE) sensitivity of Inconel 718 by means of tensile tests. Hydrogen was charged into the test specimens via a cathodic charging process prior to the tensile tests. Various heat treatments were applied to conventionally aged specimens to fabricate specimens with different precipitation conditions for the γ″ phase and the δ phase. For each precipitation condition, we fabricated two specimens, one of which was charged with hydrogen before the tensile test. All specimens were tensioned under identical tensile conditions. The percent loss of the reduction of area (RA) caused by pre-charged hydrogen was used to assess HE sensitivity. Both the δ phase and the γ″ phase were found to play significant roles in altering HE sensitivity of Inconel 718. When these phases were totally dissolved, the HE sensitivity of the alloy was very low. The percent loss of RA decreased along with a decrease in the fractional volume of γ″. The δ-free aged alloy had greatly enhanced HE resistance, the same level as that of conventionally annealed alloy, and its strength was equal to that of the conventionally aged alloy. Fracture origins noted on the specimens were located on the surface layers and displayed brittle cleavage when pre-charged hydrogen was utilized. Local transgranular cleavages initiated from the δ/matrix were also observed in conventionally aged specimens, where there was a presence of pre-charged hydrogen. Therefore, the δ phase was considered to promote HE by initializing micro-cracks from δ/matrix interfaces. Since the δ-free aged alloy has both good strength and good ductility, we propose that it is advantageous for fabricating some hydrogen-containing parts.  相似文献   

7.
In this study, the metallurgical aspects of several alloy systems prepared by low pressure plasma spraying were evaluated. Highly dense thick layers (greater than 6 × 10-2 cm) of Inconel 617, Inconel 671, MZC copper, Cu-5Ni-2.5Ti and Cu-2Ni-1.2Ti were deposited onto Inconel 718 and OFHC copper substrates. These coating layers were shown to be tenaciously bonded to the substrates provided that proper processing controls were used.  相似文献   

8.
718镍基合金是高酸性油气井中常用的金属材料,但目前对其腐蚀机理和影响因素的研究较少。利用高温高压反应釜进行腐蚀模拟,采用失重法、扫描电镜(SEM)等手段研究了温度对718镍基合金在高含H_2S/CO_2环境下腐蚀行为的影响。结果表明:在CO_2分压3.5 MPa、H_2S分压3.5 MPa、Cl~-含量150 000 mg/L的模拟环境下,718镍基合金在150,175,205℃下均呈现全面腐蚀,未出现点蚀和局部腐蚀。但随温度升高,镍基合金718的均匀腐蚀速率逐渐增加,材料表面钝化膜出现硫化,并逐渐向腐蚀产物膜转变,质地由致密变得疏松。  相似文献   

9.
Sang  Lijun  Lu  Junxia  Wang  Jin  Ullah  Rafi  Sun  Xiangcheng  Zhang  Yuefei  Zhang  Ze 《Journal of Materials Science》2021,56(28):16097-16112
Journal of Materials Science - The effect of deformation temperature on tensile behavior of Inconel 718 alloy has been studied by a self-developed in-situ high-temperature tensile stage inside a...  相似文献   

10.
Machining technology for nickel-based alloy Inconel 718 is a hotspot and difficult problem in industrial fields and the high-speed milling (HSM) shows obvious superiority in difficult-to-process material machining. As the machining parameters are crucial in processing of Inconel 718 and the study of chip is important in metal cutting, there is an urgent need for deep research into the machining parameter optimization based on chip variation in HSM for Inconel 718 curved surface, so as to further increase the productivity of Inconel 718 in aerospace field. Regarding Inconel 718 curved surface, an experimental study about the machining parameter optimization based on chip variation in HSM is conducted. The relationship between chip shape and machining parameters is studied, and the roughness is measured and discussed for the machined curved surface. Results indicate that the chip area relates to geometric feature of curved surface, the optimal range for spindle speed is from 9000 to 11000 rpm based on chip variation, the feed per tooth should be large in case that condition permitted, and the cutting depth can be selected according to other constraint conditions. This study is significant for improving the machining quality and efficiency of Inconel 718 curved surface.  相似文献   

11.
The effects of pre- and post-weld heat treatments on the butt joint quality of 3.18-mm thick Inconel 718 alloy were studied using a 4 kW continuous wave Nd:YAG laser system and 0.89-mm filler wire with the composition of the parent metal. Two pre-weld conditions, i.e., solution treated, or solution treated and aged, were investigated. The welds were then characterized in the as-welded condition and after two post-weld heat treatments: (i) aged, or (ii) solution treated and aged. The welding quality was evaluated in terms of joint geometries, defects, microstructure, hardness, and tensile properties. HAZ liquation cracking is frequently observed in the laser welded Inconel 718 alloy. Inconel 718 alloy can be welded in pre-weld solution treated, or solution treated and aged conditions using high power Nd:YAG laser. Post-weld aging treatment is enough to strengthen the welds and thus post-weld solution treatment is not necessary for strength recovery.  相似文献   

12.
Abstract

A nickel alloy of a composition similar to that of the nickel based superalloy Inconel alloy 718 (IN718) was produced with the electron beam melting (EBM) process developed by Arcam AB. The microstructures of the as processed and heat treated material are similar to that of conventionally produced IN718, except that the EBM material showed some porosity and the δ phase did not dissolve during the solution heat treatment because the temperature of 1000°C apparently was too low. Mechanical testing of the layer structured material, parallel and perpendicular to the built layers, revealed sufficient strength in both directions. However, it showed only limited elongation when tested perpendicular to the built layers due to local agglomerations of pores. Otherwise, data for the hardness, Young’s modulus, 0·2% yield tensile strength and ultimate tensile strength match those recommended for IN718.  相似文献   

13.
The effect of hydrogen charging on the mechanical properties of gas tungsten arc welds (GTAW) of aluminium-lithium alloy 8090 (2 mm thick rolled sheets) was studied using cathodic hydrogen charging. To stimulate an increased amount of hydrogen into welds, the charging current density was increased through a galvanostatic circuit. The deleterious effect of hydrogen on ductility is documented in terms of degradation in tensile ductility (reduction in area and elongation-to-failure). Microscopic analysis was performed to characterize the microstructure and grain morphology of the weldments. Hardness measurements revealed an increase in hardness of the charged welds over the uncharged counterpart. Scanning electron microscopy observations of uncharged welds revealed a mixed mode failure with predominantly ductile rupture. Although, the charged welds exhibited a near similar mode of failure to that of the uncharged welds, extensive planar slip deformation was observed near the outer surface of the uncharged welds. The change in fracture mode from the outer surface to the central portion of the charged welds is attributed to intrinsic differences in hydrogen densities. An attempt has been made to rationalize the role of hydrogen on tensile properties and quasi-static fracture behaviour of the GTAW welds.  相似文献   

14.
Joining of Inconel 718 alloys to silicon nitrides using Ag–27Cu–3Ti alloys was performed to investigate the microstructural features of interfacial phases and their effect on joint strength. The Si3N4/Inconel 718 alloy joints had a low shear strength in the range 70.4–46.1 MPa on average, depending on joining temperature and time. When the joining time was held for 1.26 ks at 1063 K, shear, tension, and four-point bending strength were 70.4, 129.7, and 326.5 MPa on average. The microstructures of the joints typically consisted of six types of phases. They were TiN and Ti5Si4 between silicon nitride and filler metal, a copper- and silver-rich phase, island-shaped Ti–Cu phase, a Ti–Cu–Ni alloy layer between filler and base metal, and diffusion of titanium into the Inconel 718 alloys. With increasing joining temperature, the thickness increase of the Ti–Cu–Ni alloy layer was much greater than that of the reaction layer. Thus the diffusion rate of titanium into the base metal was much greater than the reaction rate with silicon nitride. This behaviour of titanium results in the formation of a Ti–Cu–Ni alloy layer in all the joints. The formation of these layers was the cause of the strength degradation of the Si3N4/Inconel 718 alloy joints. This fact was supported by the analyses of fracture path after four-point bending strength tests.  相似文献   

15.
The results of thermal conductivity measurements on Inconel 718 and 304 stainless steel by the comparative and flash diffusivity techniques are reported for the temperature range 0–700°C. For 304 stainless steel, excellent agreement with published data is found for the specific heat, thermal diffusivity, and thermal conductivity. In the case of Inconel 718, the measurements show that the conductivity depends critically on the sample thermal history and the metallurgical condition of the alloy. Measurements on a solution-treated sample indicated a conductivity function close to that reported previously, while precipitated samples showed a higher conductivity, similar to the conductivityvs-temperature function used for reduction of comparative thermal conductivity data with Inconel 718 references. These results indicate that Inconel 718 is not a suitable reference for high-accuracy comparative thermal conductivity measurements unless its thermal history and associated conductivity function are known.  相似文献   

16.
Hydrogen-induced modification in the deformation and fracture of a precipitation-hardened Fe-Ni based austenitic alloy has been investigated in the present study by means of thermal hydrogen charging experiment, tensile tests, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It is found that the γ' particles are subjected to the multiple shearing by dislocations during plastic deformation, which promotes the occurrence of the dislocation planar slip. Moreover, the alloy will be enhanced by hydrogen resulting in the formation of strain localization at macroscale. So, the mechanisms of deformation and fracture in the alloy have been proposed in terms of serious hydrogen-induced planar slip at microscale which can lead to macroscopic strain localization.  相似文献   

17.
Traditional manufacturing of Inconel 718 components from castings and thermomechanical processing routes involve extensive post processing and machining to attain the desired geometry. Additive manufacturing (AM) technologies including direct energy deposition (DED), selective laser melting (SLM), electron beam melting (EBM) and binder jet 3D printing (BJ3DP) can minimize scrap generation and reduce lead times. While there is extensive literature on the use of melting and solidification based AM technologies, there has been limited research on the use of binder jet 3D printing. In this paper, a brief review on binder jet additive manufacturing of Inconel 718 is presented. In addition, existing knowledge on sintering of Inconel 718 has been extended to binder jet 3D printing. We found that supersolidus liquid phase sintering (SLPS) is necessary to achieve full densification of Inconel 718. SLPS is sensitive to the feedstock chemistry that has a strong influence on the liquid volume fraction at the processing temperature. Based on these results, we discuss an empirical framework to determine the role of powder particle size and liquid volume fraction on sintering kinetics. The role of powder packing factor and binder saturation on microstructural evolution is discussed. The current challenges in the use of BJ3DP for fabrication of Inconel 718, as well as, extension to other metal systems, are presented.  相似文献   

18.
The nickel‐based superalloys Inconel alloy 600, Udimet alloy 720, and Inconel alloy 718 were produced by electron beam melting (EBM), casting, and directional solidification (DS). The distance between dendrites and the size of the precipitates indicated the difference in solidification rates between the three processes. In this study, the solidification rate was fastest with EBM, closely followed by casting, whereas it was much slower with DS. In the directional solidified materials the <100> direction was the fastest and thus, preferred growth direction. The EBM samples show a sharp (001)[100] texture in the building direction and in the two scanning directions of the electron beam. Macrosegregation was observed in some cast and directionally solidified samples, but not in the EBM samples. The melting temperatures are in good agreement with literature and the narrow melting interval of IN600 compare to UD720 and IN718 might reduce the risk of incipient melting during EBM processing. Porosity was observed in the EBM samples and the reasons are discussed. However, EBM seems to be a feasible process route to produce nickel‐based superalloys with well‐defined texture, no macrosegregation and a rapidly solidified microstructure.  相似文献   

19.
汪静  肖千文  陈康宁 《材料导报》2001,16(7):67-68,59
用粉末冶金的方法制得具有较低氢超电位活性阴极,并研究了不同配比的活性阴极的电化学性能和电极的表面形貌,实验结果表明,用粉末冶金的方法制得的阴极具有较高的活性,可使析氢反应超电位降低200-250mV,是一种有广阔应用前景的阴极材料。  相似文献   

20.
In this study,Inconel 738 alloy was diffusion bonded to a ferritic stainless steel.The effect of bonding temperature on the microstructural development across the joint region was investigated.Following the diffusion bonding,conventional characterization techniques such as scanning electron microscopy(SEM),energy dispersive X-ray(EDX) and microhardness were used to examine the interfacial microstructure.It was seen that bonding temperature was effective on the diffusion of Ni from Inconel 738 to ferritic st...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号