首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
We examined the involvement of histone H3 modifications in the chromosome condensation and decondensation of somatic cell nuclei injected into mature pig oocytes. Nuclei of pig granulosa cells were transferred into in vitro matured intact pig oocytes, and histone H3 phosphorylation, acetylation, and methylation were examined by immunostaining with specific antibodies in relation to changes in chromosome morphology. In the condensed chromosomes of pig oocytes at metaphase II, histone H3 was phosphorylated at serine 10 (H3-S10) and serine 28 (H3-S28), and methylated at lysine 9 (H3-K9), but was not acetylated at lysine 9, 14 and 18 (H3-K9, H3-K14 and H3-K18). During the first 2 h after nuclear transfer, a series of events were observed in the somatic nuclei: nuclear membrane disassembly; chromosome condensation to form a metaphase-like configuration; an increase in histone H3 phosphorylation levels (H3-S10 and H3-S28). Next, pig oocytes injected with nuclei of somatic cells were electroactivated and the chromosome morphology of oocytes and somatic cells was examined along with histone modifications. Generally, chromosomes of the somatic cells showed a similar progression of cell cycle stage to that of oocytes, through anaphase II- and telophase II-like stages then formed pronucleus-like structures, although the morphology of the spindles differed from that of oocyte spindles. The chromosomes of somatic cells also showed changes in histone H3 dephosphorylation and reacetylation, similar to oocytes. In contrast, histone H3 methylation (H3-K9) of somatic cell nuclei did not show any significant change after injection and electroactivation of the oocytes. These results suggest that nuclear remodeling including histone H3 phosphorylation and acetylation of injected somatic nuclei took place in the oocytes under regulation by the oocyte cytoplasm.  相似文献   

5.
Scope: Dysfunction of histone acetyltransferases (HATs) or histone deacetylases (HDACs) involved in histones acetylation has been associated with cancer. Inhibitors of these enzymes are becoming potential targets for new therapies. Methods and Results: This study reports by Western‐Blot analysis, that peptide lunasin is mainly an in vitro inhibitor of histone H4 acetylation by P300/cAMP‐response element‐binding protein (CBP)‐associated factor (PCAF), with IC50 values dependent on the lysine position sensitive to be acetylated (0.83 μM (H4‐Lys 8), 1.27 μM (H4‐Lys 12) and 0.40 μM (H4‐Lys 5, 8, 12, 16)). Lunasin is also capable of inhibiting H3 acetylation (IC50 of 5.91 μM (H3‐Lys 9) and 7.81 μM (H3‐Lys 9, 14)). Studies on structure‐activity relationship establish that lunasin's sequence are essential for inhibiting H4 acetylation whereas poly‐D sequence is the main active sequence responsible for H3 acetylation inhibition. Lunasin also inhibits H3 and H4 acetylation and cell proliferation (IC50 of 181μM) in breast cancer MDA‐MB‐231 cells. Moreover, this peptide decreases expression of cyclins and cyclin dependent kinases‐4 and ‐6, implicated in cell cycle pathways. Conclusion: Results from this study demonstrates lunasin's role as modulator of histone acetylation and protein expression that might contribute on its chemopreventive properties against breast cancer.  相似文献   

6.
Selective Hg(2+)-exchange properties of highly charged sodium swelling micas (Na-2-, Na-3-, and Na-4-micas), sodium Engelhard titanosilicate-4 (Na-ETS-4), and sodium titanosilicate were determined by use of distribution coefficients (K(d)), ion-exchange isotherms, and Kielland plots for their potential use of Hg decontamination from groundwater and soils. X-ray diffraction (XRD) patterns after 2Na(+) → Hg(2+) exchange were collected to check for change in (001) spacings of differently charged sodium micas. The isotherms and Kielland plots suggested that Na-ETS-4 was highly selective for Hg(2+). Also, the K(d) value of Na-ETS-4 was the highest among the tested exchangers, supporting its high selectivity. Hg releases from Hg-exchanged Na-4-mica and Na-ETS-4 were found to be lower compared to other samples tested with simulated groundwater. The (001) spacings of sodium micas after Hg(2+) exchange changed from ~ 12 to ~ 14 ? or/and 12 ? depending on their layer charge density and the uptake amount of Hg. Our results suggest that Na-ETS-4 is a good candidate for mercury(II) decontamination from groundwater and soils.  相似文献   

7.
An integrated cellular response to DNA damage is essential for the maintenance of genome integrity. Recently, post-translational modifications to histone proteins have been implicated in DNA damage responses involving the Rad9 family of checkpoint proteins. In budding yeast, methylation of histone H3 on lysine 79 (H3-K79me) has been shown to be required for efficient checkpoint signalling and Rad9 localization on chromatin. Here, we have used a rad9 Tudor mutant allele and cells mutated for Dot1, the H3-K79 methylase, to analyse the epistatic relationship between RAD9 and DOT1 genes regarding the DNA damage resistance and checkpoint activation pathways. Our results show that RAD9 is epistatic to DOT1 and suggest that it acts downstream of the Dot1 methylase in the damage resistance and checkpoint response. We have also found that the Tudor domain of Rad9 is necessary for in vitro binding to H3-K79me as well as Rad9 focal accumulation in response to DNA damage in vivo. In summary, our study demonstrates that the interaction between Rad9, via its Tudor domain, and methylated H3-K79 is required at two different steps of the DNA damage response, an early step corresponding to checkpoint activation, and a late step corresponding to DNA repair. The study further shows that the function of this interaction is cell cycle-regulated; the role in checkpoint activation is restricted to the G(1) phase and its role in DNA repair is restricted to G(2).  相似文献   

8.
9.
A highly efficient technique, termed PCR-mediated chromosome splitting (PCS), was used to create cells containing a variety of genomic constitutions in a haploid strain of Saccharomyces cerevisiae. Using PCS, we constructed two haploid strains, ZN92 and SH6484, that carry multiple mini-chromosomes. In strain ZN92, chromosomes IV and XI were split into 16 derivative chromosomes, seven of which had no known essential genes. Strain SH6484 was constructed to have 14 mini-chromosomes carrying only non-essential genes by splitting chromosomes I, II, III, VIII, XI, XIII, XIV, XV, and XVI. Both strains were cultured under defined nutrient conditions and analyzed for combinatorial loss of mini-chromosomes. During culture, cells with various combinations of mini-chromosomes arose, indicating that genomic reorganization could be achieved by splitting chromosomes to generate mini-chromosomes followed by their combinatorial loss. We found that although non-essential mini-chromosomes were lost in various combinations in ZN92, one mini-chromosome (18kb) that harbored 12 genes was not lost. This finding suggests that the loss of some combination of these 12 non-essential genes might result in synthetic lethality. We also found examples of genome-wide amplifications induced by mini-chromosome loss. In SH6484, the mitochondrial genome, as well as the copy number of genomic regions not contained in the mini-chromosomes, was specifically amplified. We conclude that PCS allows for genomic reorganization, in terms of both combinations of mini-chromosomes and gene dosage, and we suggest that PCS could be useful for the efficient production of desired compounds by generating yeast strains with optimized genomic constitutions.  相似文献   

10.
The TRP1 gene of the yeast Kluyveromyces lactis has been cloned from a genomic library by complementation of the Saccharomyces cerevisiae trp1-289 mutation. The gene was located within the clone by transposon mutagenesis and the coding region identified by DNA sequencing. This has indicated that K. lactis TRP1 encodes a 210-amino acid polypeptide which shows 53% identity to the homologous S. cerevisiae protein. The K. lactis TRP1 gene has been disrupted by substituting the S. cerevisiae URA3 gene for a large part of the TRP1 coding sequence. Replacement of the chromosomal TRP1 locus with this construction has enabled the production of non-reverting trp1- strains of K. lactis, while a genetic analysis of the disrupted allele confirmed that the TRP1 gene had been cloned. DNA sequencing has also shown that the K. lactis TRP1 sequence is flanked by genes encoding inorganic pyrophosphatase and histone H3, which we have designated IPP and HHT1 respectively. Hybridization studies have shown that in common with S. cerevisiae, K. lactis has two copies of the histone H3 gene. Each H3 gene is closely linked to a gene encoding histone H4 and in both yeast species the IPP gene is tightly linked to one of the histone gene pairs.  相似文献   

11.
The epigenetic status of a donor nucleus has an important effect on the developmental potential of embryos produced by somatic cell nuclear transfer (SCNT). In this study, we transferred cultured rabbit cumulus cells (RCC) and fetal fibroblasts (RFF) from genetically marked rabbits (Alicia/Basilea) into metaphase II oocytes and analyzed the levels of histone H3-lysine 9-lysine 14 acetylation (acH3K9/14) in donor cells and cloned embryos. We also assessed the correlation between the histone acetylation status of donor cells and cloned embryos and their developmental potential. To test whether alteration of the histone acetylation status affects development of cloned embryos, we treated donor cells with sodium butyrate (NaBu), a histone deacetylase inhibitor. Further, we tried to improve cloning efficiency by chimeric complementation of cloned embryos with blastomeres from in vivo fertilized or parthenogenetic embryos. The levels of acH3K9/14 were higher in RCCs than in RFFs (P<0.05). Although the type of donor cells did not affect development to blastocyst, after transfer into recipients, RCC cloned embryos induced a higher initial pregnancy rate as compared to RFF cloned embryos (40 vs 20%). However, almost all pregnancies with either type of cloned embryos were lost by the middle of gestation and only one fully developed, live RCC-derived rabbit was obtained. Treatment of RFFs with NaBu significantly increased the level of acH3K9/14 and the proportion of nuclear transfer embryos developing to blastocyst (49 vs 33% with non-treated RFF, P<0.05). The distribution of acH3K9/14 in either group of cloned embryos did not resemble that in in vivo fertilized embryos suggesting that reprogramming of this epigenetic mark is aberrant in cloned rabbit embryos and cannot be corrected by treatment of donor cells with NaBu. Aggregation of embryos cloned from NaBu-treated RFFs with blastomeres from in vivo derived embryos improved development to blastocyst, but no cloned offspring were obtained. Two live cloned rabbits were produced from this donor cell type only after aggregation of cloned embryos with a parthenogenetic blastomere. Our study demonstrates that the levels of histone acetylation in donor cells and cloned embryos correlate with their developmental potential and may be a useful epigenetic mark to predict efficiency of SCNT in rabbits.  相似文献   

12.
We have previously identified an autonomously replicating segment (ARS) near the 3' end of the histone H4 gene at the copy-I H3-H4 locus. We have now searched for additional autonomously replicating segments and sequences homologous with the ARS core consensus sequence near the copy-II histone H4 gene and both of the histone H3 genes. No new ARS elements were identified by functional cloning assays. However, several matches to the ARS core consensus element were found within the DNA sequences of the copy-I and copy-II genes. An exact match to the ARS core consensus was identified in the region downstream from the copy-I histone H3 gene and a set of sequences with weak homology was also located within the copy-II region. However, restriction fragments including these sequences did not demonstrate ARS activity on a plasmid in transformed cells.  相似文献   

13.
14.
In mammalian oocytes, histone H3 and histone H4 (H4) in the chromatin are highly acetylated at the germinal vesicle (GV) stage, and become globally deacetylated after GV breakdown (GVBD). Although nuclear core histones can be exchanged by cytoplasmic free histones in somatic cells, it remains unknown whether this is also the case in mammalian oocytes. In this study, we examined the histone exchange activity in maturing porcine oocytes before and after GVBD, and investigated the correlations between this activity and both the acetylation profile of the H4 N-terminal tail and the global histone acetylation level in the chromatin. We injected Flag-tagged H4 (H4-Flag) mRNA into GV oocytes, and found that the Flag signal was localized to the chromatin. We next injected mRNAs of mutated H4-Flag, which lack all acetylation sites and the whole N-terminal tail, and found that the H4 N-terminal tail and its modification were not necessary for histone incorporation into chromatin. Despite the lack of acetylation sites, the mutated H4-Flag mRNA injection did not decrease the acetylation level on the chromatin, indicating that the histone exchange occurs partially in the GV chromatin. In contrast to GV oocytes, the Flag signal was not detected on the chromatin after the injection of H4-Flag protein into the second meiotic metaphase oocytes. These results suggest that histone exchange activity changes during meiotic maturation in porcine oocytes, and that the acetylation profile of the H4 N-terminal tail has no effect on histone incorporation into chromatin and does not affect the global level of histone acetylation in it.  相似文献   

15.
16.
It has been suggested that bactrian camel milk and colostrum may be a good source of biologically significant oligosaccharides but, although the oligosaccharides found in bactrian camel milk and colostrum have been characterised, those in dromedary camel milk have not. In this study, seven oligosaccharides from commercially available pasteurised dromedary camel milk were characterised using 1H nuclear magnetic resonance spectroscopy. The following oligosaccharides were detected: Gal(β1-3)Gal(β1-4)Glc (3′-galactosyllactose), Gal(β1-4)GlcNAc(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (lacto-N-neohexaose), Neu5Ac(α2-3)Gal(β1-4)Glc (3′-sialyllactose), Neu5Ac(α2-6)Gal(β1-4)Glc (6′-sialyllactose), Neu5Ac(α2-3)Gal(β1-3)Gal(β1-4)Glc (sialyl-3′-galactosyllactose), Neu5Ac(α2-3)Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (sialyllacto-N-novopentaose a) and Neu5Ac(α2-6)Gal(β1-4)GlcNAc(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (monosialyllacto-N-neohexaose).  相似文献   

17.
Reduction of the antimicrobial efficacy of lysozyme-chelator combinations against two Escherichia coli O157:H7 strains on addition of mineral salts was studied. The objective of the study was to determine the effect of type and concentration of mono-, di-, and trivalent mineral salts on the antimicrobial effectiveness of lysozyme and various chelators against E. coli O157:H7. Seven salts (Al3+, Ca2+, Fe2+, Fe3+, K+, Mg2+, and Na+) at 1 to 10 mM were added to aqueous solutions of lysozyme and disodium ethylenediamine tetraacetic acid (EDTA), disodium pyrophosphate (DSPP), or pentasodium tripolyphosphate (PSTPP) at pH 6, 7, or 8 and applied to cultures of E. coli O157:H7 strains 932 and H1730. Inhibitory activity of lysozyme chelator combinations against both strains was completely lost after addition of > or = 1 mM Ca2+ and Mg2+ at pH 7 and 8. At pH 6, antimicrobial activity of lysozyme-EDTA against both strains was retained in the presence of calcium or magnesium cations. DSPP-lysozyme inhibited strain H1730 at pH 6 despite the presence of Mg2+. Concentrations above 4 mM Fe2+ neutralized activity of all lysozyme-chelator combinations. Reversal of inhibition by lysozyme-chelator complexes by the monovalent Na+ and K+ ions depended on E. coli O157:H7 strain type. Neither monovalent cation reversed inhibition of strain 932. However, Na+ and K+ reversed lysozyme-chelator inhibition of strain H1730. The addition of > or = 1 mM Fe3+ or Al3+ was effective in reversing inhibition of both strains by lysozyme and EDTA at pH 6, 7, and 8. Isothermal titration calorimetry was used to determine the amount of ion-specific competitive binding of free cations by EDTA-lysozyme combinations. A mechanistic model for the antimicrobial functionality of chelator-lysozyme combinations is proposed.  相似文献   

18.
We have developed a procedure to purify nucleosomal assembly-competent histones as a mixture of H2A, H2B, H3 and H4 from isolated nuclei of the yeast Saccharomyces cerevisiae with a purity of 70–80%. The mixture contained each of the histone subunits approximately at the equi-molar ratio. Plasmid pBR322 DNA was assembled into nucleosomes with the purified yeast histones in the presence of nucleoplasmin from unfertilized eggs of the frog Xenopus laevis. The efficiency of assembly of yeast histones was comparable to that of core histones purified from HeLa cells. The length of DNA fragment wrapping around a core histone particle and the molar ratio of histone components in an assembled nucleosome particle were estimated to be 150 ± 10 bp long and H2A:H2B:H3:H4 = 1·0:0·9:0·9:1·0, respectively.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号