首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
在室温下,对聚乙炔的一种单取代衍生物的荧光特性进行了研究.这种聚乙炔的单取代衍生物的薄膜能够发出强的绿色荧光,其荧光光谱的主要荧光峰位于510 nm,而它的两个次要荧光峰分别位于440 nm和380 nm.位于510 nm、440 nm的两个荧光峰分别是该高分子材料所形成的激发缔合物的主要和次要发光峰,而位于380 nm的荧光峰是单条高分子链的发光峰.这些光谱方面的变化可用该高分子发生的结构上的变化来解释.  相似文献   

2.
在18至300 K的温度范围内,对聚乙炔的一种单取代衍生物的荧光特性进行了研究.在室温时,这种聚乙炔的单取代衍生物的薄膜能够发出强的绿色荧光,其荧光光谱的主要荧光峰位于510 nm,而它的两个次要荧光峰分别位于440 nm和380 nm.位于510、440 nm的两个荧光峰分别是该高分子材料所形成的激发缔合物的主要和次要发光峰,而位于380 nm的荧光峰是单条高分子链的发光峰.当温度从300 K降到18 K的过程中,原荧光光谱发生中的激发缔合物的主要发光峰从510 nm逐渐红移到570 nm,而其激发缔合物的次要发光峰逐渐消失;与此同时,该高分子材料的380 nm的荧光峰逐渐与主荧光峰分开.这些光谱方面的变化可用该高分子在低温下所发生的结构上的变化来解释.  相似文献   

3.
咔唑在Sol-Gel制备的SiO_2薄膜中的发光机理   总被引:1,自引:0,他引:1  
利用溶胶-凝胶(sol-gel)工艺制备了能够发射红光的含咔唑的SiO2薄膜。测量了薄膜样品的发射谱,发现当激发波长从610nm连续减小到400nm时,样品的发射波长从760nm连续蓝移到了550nm左右。将含咔唑的SiO2薄膜溶解在乙醇中,经逐步稀释后所得溶液的发光可以从绿光变到紫光。基于它们的发射谱、激发谱和吸收谱,探讨了咔唑在SiO2薄膜中发红光的机理。结果表明,咔唑分子被紧缩在SiO2薄膜内部的微孔中,因受到挤压而使其共轭尺寸变大,从而导致咔唑的发光特性发生改变。  相似文献   

4.
Tm:YAP激光晶体光谱参数的计算   总被引:1,自引:3,他引:1  
采用丘克劳斯基(Czochralski)法生长了Tm:YAP晶体,研究了该晶体在室温下的吸收光谱和荧光光谱.结果表明,Tm:YAP晶体在689.5 nm和795 nm左右有较强的吸收峰,分别对应于3H6→3F3和3H6→3H4的能级跃迁,半峰全宽(FWHM)分别为22.5 nm和30 nm,吸收截面分别为1.89×10-20 cm2和1.35×10-20 cm2.荧光光谱表明Tm:YAP晶体发射波长为1.89μm,相应的荧光寿命为13.90 ms,发射截面为1.58×10-19 cm2.根据乍得-奥菲特(Judd-Ofelt)理论计算了Tm3+在Tm:YAP晶体中的强度参数:Ω2=1.4560×10-20cm2,Ω4=2.0673×10-20 cm2,Ω6=0.3181×10-20 cm2.结果表明,Tm:YAP晶体具有宽的吸收峰、长荧光寿命和较大的积分发射截面的性质,非常适合于激光二极管(LD)抽运,有利于获得低阈值高效率的2μm波段激光输出.  相似文献   

5.
新型蓝光材料9,10-二萘蒽衍生物的合成及表征   总被引:1,自引:0,他引:1  
通过引人不同烷基基团,采用亲核取代反应,设计与合成了3种新型9,10-二萘蒽类荧光材料,并研究了它们的紫外可见吸收、荧光发射等光物理性质.这些化合物在甲苯中均发射蓝色荧光,最大吸收和荧光发射峰分别为234~235 nm和431 nm,该类化合物具有较高的相对荧光量子效率,为ADN的1.2倍.它们具有130℃以上的玻璃化转变温度,最高的达到了179℃.以ITO/CFx/NPB/MDTBADN(EDTBADN,Tri-TBADN)/Alq3/LiF/A1为基本器件结构研究了电流密度和电压以及发光效率之间的关系.  相似文献   

6.
Li_2的405~460nm范围内的吸收及发射谱   总被引:1,自引:0,他引:1  
曹宏力  那叶青  金凤  马祖光 《中国激光》1989,16(11):663-667
本文报道了锂双原子分子在405~460nm范围内的吸收谱,吸收峰在422.5nm和450nm附近,两个吸收峰应来自x~3∑_u~+→2~3II_g的吸收跃迁.激光泵浦得到了456nm附近的感生荧光谱,并对这一谱带的发射机理进行了讨论.  相似文献   

7.
采用丘克劳斯基(Czochralski)法生长了Tm∶YAP晶体,研究了该晶体在室温下的吸收光谱和荧光光谱。结果表明,Tm∶YAP晶体在689.5 nm和795 nm左右有较强的吸收峰,分别对应于3H6→3F3和3H6→3H4的能级跃迁,半峰全宽(FWHM)分别为22.5 nm和30 nm,吸收截面分别为1.89×10-20cm2和1.35×10-20cm2。荧光光谱表明Tm∶YAP晶体发射波长为1.89μm,相应的荧光寿命为13.90 ms,发射截面为1.58×10-19cm2。根据乍得-奥菲特(Judd-Ofelt)理论计算了Tm3 在Tm∶YAP晶体中的强度参数:Ω2=1.4560×10-20cm2,Ω4=2.0673×10-20cm2,Ω6=0.3181×10-20cm2。结果表明,Tm∶YAP晶体具有宽的吸收峰、长荧光寿命和较大的积分发射截面的性质,非常适合于激光二极管(LD)抽运,有利于获得低阈值高效率的2μm波段激光输出。  相似文献   

8.
本文报道我们对LiF晶体中M带色心所做的激发谱与荧光谱。过去有关这方面的工作可归纳为:已知M吸收带在室温下虽呈单峰,但实际上隐藏着比较复杂的结构,用M带中不同波长的光激发,晶体可发射出峰值波长约530nm和700nm的绿色和红色的荧光带。本文与他人工作不同之处在于我们较系统的观察了γ射线辐照和电子束轰击着色的LiF晶  相似文献   

9.
泡生法生长KYb(WO4)2晶体及其结构与光谱性能   总被引:5,自引:3,他引:5  
对顶部籽晶提拉法(TSSG)进行了改进,采用泡生法生长KYb(WO4)2晶体(简称KYbW),以0.05℃/h的速率降温生长,转速5~10 r/min,生长周期10~15 d,降温速率15~20℃/h。研究了KYbW晶体的结构,给出了两种晶胞的选取方法。通过晶体的X射线衍射(XRD)谱,计算出晶体的两种晶格常数分别为a=1.061 nm,b=1.029 nm,c=0.749 nm,β=130.65°;a′=0.807 nm,b′=1.029 nm,c′=0.749 nm,β′=94.34°。测得晶体的吸收光谱,结果表明其吸收带在920~1000 nm,计算出主吸收峰981 nm处的吸收截面为11.12×10-20cm2。测得晶体的荧光光谱,结果表明KYbW晶体在1007 nm和1037 nm附近都有较强的发射峰,主峰1037 nm处的发射线宽(FWHM)达13 nm,因此KYbW晶体可作为可调谐激光增益介质,计算出1037 nm处的受激发射截面积eσm=3.4×10-20cm2。  相似文献   

10.
为了改善大功率白光发光二极管(WLED)散热、老化及传统发光方式红光缺失的问题,通过均相共沉淀法和真空烧结制备了铈镨共掺杂钇铝石榴石(YAG)透明陶瓷。实验结果表明:在450 nm波长激发下,铈镨双掺杂陶瓷存在530 nm的黄绿光和609 nm的红光特征发射峰,发光波长覆盖500 nm到650 nm,陶瓷发射光强度明显强于荧光粉。激发谱在340 nm处有强而宽的吸收带;采用340 nm的紫外光激发陶瓷样品也呈现530,609 nm特征发射峰。530,609 nm处的发射光强度与450 nm激发相近,在紫外光激发LED上具有一定的应用前景。  相似文献   

11.
The optical properties of one mono-substituted polyacetylene and two di-substituted polyacetylenes have been investigated. Each of the substituted polyacetylenes bears a carbazole unit in the side chain. In spite of the differences in their molecular structures, the dilute solutions(about 1 × 10^-6 M) of these substituted polyacetylenes exhibit the same absorptions and deep-blue emissions (about 360 nm). Interestingly, the absorption and emission spectra of these substituted polyacetylenes are similar to those of the small molecule carbazole. As the concentration of the substituted polyacetylenes increases to about 1 × 10^-6 M, we have detected intense blue emissions at about 475 nm. Our results indicate that the absorption, the deep-blue emission(about 360nm) and the intense blue emission (about 475nm) originate from the carbazole chromophores in the side chain.  相似文献   

12.
Metal halide perovskite light-emitting diodes (PeLEDs)show great potential in ultra-high-definition displays,due to their narrowband emission,wide color gamut (~140%),and cost-effective solution processability[1]M.Thanks to scientists' tremendous efforts,the external quantum efficiencies (EQEs)for the state-of-the-art PeLEDs emitting near-infrared and green light have reached 21.6%[2] and 23.4%[3],respectively.However,blue PeLEDs,as one of the essential technologies for perovskite-based high-resolution monitors and white light-ing,are still inferior to their red and green counterparts.Blue emission is usually achieved by using dimensional engineer-ing (quantum confinement) or composition engineering(mixed halides,e.g.,mixed Br/Cl) strategies.For example,quasi-two-dimensional (2D) perovskites,nanocrystals (e.g.,quantum dots,QDs) or nanoplates,give blue emission due to quantum confinement effects.However,achieving pure-blue(465-475 nm) and deep-blue (420-465 nm) light from quasi-2D perovskites is challenging[4],while ultra-small QDs and nanoplates suffer from high surface trap density and poor sta-bility[5].For PeLEDs based on mixed Br/Cl perovskites,the emis-sion peak can be tuned easily,but these perovskites face the disadvantages of phase separation and deep energy-level Cl vacancies[4].  相似文献   

13.
制备了碲酸盐玻璃样品70TeO2-(15-x)B2O3-xNb2O5-15ZnO-1wt%Er2O3(TBN,x=0,3,6,9,12,15 mol%).测试了玻璃样品的热稳定性和光谱性质.根据Judd-Ofelt理论计算了TBN玻璃中Er3 离子的强度参数(Ω2=(5.42~6.76)×10-20 cm2,Ω4=(1.37~1.73)×10-20cm2,Ω6=(0.70~0.94)×10-20 cm2),发现随着Nb2O5含量的增加,Ωt(t=2,4,6)先增加后减小.研究表明Er-O键共价性主要受基质玻璃中非桥氧数的影响,而阴阳离子间电负性的影响可以忽略.应用McCumber理论计算了Er3 离子的受激发射截面(σe=(0.77~0.91)×10-20 cm2)和Er3 离子4I13/2→4I15/2发射谱的半高宽度(FWHM=65~73 nm).比较了不同基质玻璃中Er3 离子的荧光半高宽和受激发射截面.结果表明TBN玻璃系统具有较好的带宽性能,是一种制备宽带光纤放大器的潜在基质材料.  相似文献   

14.
王大刚 《光电子.激光》2010,(10):1473-1476
用高温熔融法制备了Tm3+/Er3+/Yb3+共掺碲酸盐玻璃(TeO2-ZnO-La2O3)样品,测试了玻璃样品的吸收光谱和上转换发光光谱,分析了上转换发光机理。结果发现:在975 nm,波长激光二极管(LD)激励下,制备的碲酸盐玻璃样品可以观察到强烈的红光(662 nm)、绿光(525、546 nm)和蓝光(475 nm)三基色上转换发光,分别对应于Er3+的4F9/2→4I15/2,2H11/2→4I15/2、4S3/2→4I15/2和Tm3+的1G4→3H6能级跃迁;随着Yb3+掺杂含量和泵浦功率的增加,样品的上转换发光强度都得到了一定程度的提高;通过调整稀土掺杂的浓度,得到了接近于标准白光(EE)发射。  相似文献   

15.
Recent studies of sky-blue perovskite light-emitting diodes (PeLEDs) have extensively promoted optimal device design to achieve an external quantum efficiency (EQE) above 12%. However, the development of thin-film deep-blue PeLEDs lags dramatically behind, especially with regards to meeting the latest Rec. 2020 standard. A trichloro(3,3,3-trifluoropropyl) silane post-treatment that drives the emission of perovskite into the deep-blue region, ranging from 440 to 460 nm, which meets the Rec. 2020 standard, is proposed. The chlorine ions released from the organotrichlorosilane molecules during their polycondensation reaction provide an addition halide source to fine tune the composition of the mixed halide perovskite films, leading to increase of bandgap and deep-blue emission. In addition, hydrogen bonds between the hydroxy groups of silane molecules and halide anions in perovskite can suppress ion migration for improving emission stability. As a result, an optimal PeLED is developed with deep-blue emission at 458 nm and excellent color stability, which yields an EQE and luminance of 1.1% and 130 cd m−2, respectively, representing a state-of-the-art result for thin-film PeLEDs in this emission region. This work paves the way to achieve high-performance deep-blue PeLEDs with stable emissions to meet the demand for potential applications such as full-color display.  相似文献   

16.
Aiming for highly efficient blue electroluminescence, we have designed and synthesized a novel class of tetraphenylimidazole‐ based excited‐state intramolecular proton‐transfer (ESIPT) molecules with covalently linked charge‐transporting functional groups (carbazole‐ and oxadiazole‐functionalized hydroxyl‐substituted tetraphenylimidazole (HPI), i.e., HPI‐Cbz and HPI‐Oxd, respectively). High Tg (ca. 130 °C) amorphous films of HPI‐Cbz and HPI‐Oxd showed intense and ideal blue‐light emission (λmax = 462 and 468 nm, ΦPL = 0.44 and 0.38) with a large Stokes shift of over 160 nm and a narrow full width at half‐maximum of less than 65 nm. Organic light‐emitting devices using HPI‐Cbz and HPI‐Oxd as the emitting layer generated an efficient blue electroluminescence (EL) emission peaking at around 460 nm with excellent CIE coordinates of (x, y) = (0.15, 0.11). A maximum external quantum efficiency of 2.94%, and a maximum brightness of 1 229 cd m−2 at 100 mA cm−2, as well as a low turn‐on voltage of 4.8 V were achieved in this work.  相似文献   

17.
Alkoxy‐substituted poly(spirobifluorene)s and their copolymers with a triphenylamine derivative have been synthesized by Ni(0)‐mediated polymerization. The polymers were well soluble in common organic solvents. Pure blue‐light emissions without the long wavelength emission of poly(fluorene)s have been observed in the fluorescence spectra of polymer thin films. The light emitting diodes with a device configuration of ITO/PEDT:PSS(30 nm)/polymer(60 nm)/LiF(1 nm)/Al(100 nm) have been fabricated. The electroluminescence spectra showed the blue emissions without the long wavelength emission as observed in the fluorescence spectra. The relatively poor electroluminescence quantum yield of the homopolymer (0.017% @ 20 mA/cm2) with color coordinates of (0.16, 0.07) has been improved by the introduction of triphenylamine moiety, and the copolymer with triphenylamine derivative exhibited an electroluminescence quantum yield of 0.15 % at 20 mA/cm2 with color coordinates of (0.16, 0.08). Moreover, the introduction of polar side chains to the spirobifluorene moiety enhanced the device performance and led to the quantum yields of 0.6 to 0.7 % at 20 mA/cm2, although there was some expense of color purities.  相似文献   

18.
The emission properties of polyindenofluorenes with various proportions of straight‐ and branched‐chain alkyl substituents have been compared. The polymer with straight octyl substituents shows green emission due to formation of aggregates, while the polymer with branched 2‐ethylhexyl substituents shows blue emission. Studies of the film morphology show the presence of ordered structures due to π‐stacking of the polymer chains for the octyl‐substituted polymer, whereas the polymer with branched side‐chains shows no such order. Copolymers show intermediate behavior. A clear correlation is established between the degree of straight‐chain alkyl substitution, the formation of ordered structures in the films, and the amount of long wavelength emission in the solid‐state spectra.  相似文献   

19.
A method to control the size of nanoscale silicon grown in thermally annealed hydrogenated amorphous silicon (a-Si : H) films is reported. Using the characterizing techniques of micro-Raman scattering,X-ray diffraction and computer simulation, it is found that the sizes of the formed silicon particles change with the temperature rising rate in thermally annealing the a-Si : H films. When the a-Si: H films have been annealed with high rising rate( ~ 100 C/s), the sizes of nanoscale silicon particles are in the range of 1.6~ 15nm. On the other hand, if the a-Si: H films have been annealed with low temperature rising rate(~1 C/s),the sizes of nanoscale silicon particles are in the range of 23~46 nm. Based on the theory of crystal nucleation and growth, the effect of temperature rising rate on the sizes of the formed silicon particles is discussed. Under high power laser irradiation, in situ nanocrystallization and subsequent nc-Si clusters are small enough for visible light emission, authors have not detected any visible photoluminescence(PL) from these nc-Si clusters before surface passivation. After electrochemical oxidization in hydrofluoric acid, however, intense red PL has been detected. Cyclic hydrofluoric oxidization and air exposure can cause subsequent blue shift in the red emission. The importance of surface passivation and quantum confinement in the visible emissions has been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号