首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
针对直驱XY平台中存在的系统延迟、系统参数变化、负载扰动等不确定性以及双轴之间的耦合问题,依据模型预测控制、扰动观测及解耦控制理论,设计了一种模型预测控制器(MPC)、扰动观测器(DOB)和交叉耦合控制器(CCC)相结合的预测鲁棒跟踪控制系统。利用MPC作为前馈控制器,通过模型预测、滚动优化和反馈校正提高系统的跟踪性能。DOB能够抑制系统参数变化及外部负载扰动等不确定性因素对系统伺服性能的影响,提高系统的鲁棒性能。CCC能补偿两轴间的轮廓误差,解决双轴间的耦合问题。仿真实验结果表明,所设计的系统具有快速准确的跟踪性能和较强的鲁棒性能。所提出的控制方案能够有效地减小系统的轮廓误差,进而提高了XY平台的轮廓加工精确度。  相似文献   

2.
针对高精度直接驱动的永磁直线同步电动机伺服系统,研究其负载扰动、系统参数变化及端部效应等不确定性因素对系统伺服性能的影响,提出一种将扰动观测器(disturbance observer,DOB)和重复控制器(repetitive controller,RC)相结合的的鲁棒控制策略。基于DOB的鲁棒反馈控制器补偿了外部扰动、负载扰动、未建模动态、系统参数变化及不确定性等,保证了系统的速度鲁棒性能,但是DOB无法彻底抑制端部效应这种周期性扰动对速度品质的影响,为此,采用根据内模原理设计专门抑制周期性扰动作用的RC来消除端部效应对系统的不良影响。理论分析和仿真实验结果表明所提出的控制方案是有效的,采用该方案可明显提高系统的鲁棒性能。  相似文献   

3.
初东 《伺服控制》2014,(4):32-34
针对直线伺服系统存在的外部扰动、系统参数变化、非线性摩擦等不确定性因素对系统的影响,采用零相位误差跟踪控制器(ZPETC)和干扰观测器(DOB)相结合的控制方法,通过ZPETC来提高系统的快速跟踪能力,减小系统的跟踪误差,并通过DOB来减小不确定因素对系统的影响,从而同时提高系统的定位精度和鲁棒性。仿真结果表明,所提出的控制方案是有效的,能够明显提高系统的定位精度。  相似文献   

4.
针对永磁直线同步电机(PMLSM)伺服系统执行重复性运动任务时存在周期性扰动的问题,提出了一种新型周期学习扰动观测器(PLDOB)来削弱这些扰动。首先,建立了含有不确定性的PMLSM动态模型,利用扰动观测器(DOB)来估计包括参数变化、未建模动态、摩擦力和推力波动在内的扰动。然后,通过周期学习律来校正每个周期内的扰动。此控制方案无需扰动的数学模型以及模型参数的控制律,直接从扰动的角度设计,并且还可以对DOB中Q-滤波器带宽以外的扰动进行补偿。最后,通过实验验证了该方案是有效可行的,明显提高了系统的跟踪性能和抗扰性能。  相似文献   

5.
初东 《伺服控制》2014,(2):32-34
针对直线伺服系统存在的外部扰动、系统参数变化、非线性摩擦等不确定性因素对系统的影响,采用零相位误差跟踪控制器(ZPETC)和干扰观测器(DOB)相结合的控制方法,通过ZPETC来提高系统的快速跟踪能力,减小系统的跟踪误差,并通过DOB来减小不确定因素对系统的影响,从而同时提高系统的定位精度和鲁棒性。仿真结果表明,所提出的控制方案是有效的,能够明显提高系统的定位精度。  相似文献   

6.
针对直驱XY平台在加工高进给率或存在尖角的轮廓时精度较差这一问题,该文提出一种精密轮廓跟踪控制方法。首先,利用参考轮廓和当前位置信息构造关于轮廓误差的代价函数,采用牛顿极值搜索算法进行动态轮廓误差估计(CEE)。然后,对轮廓误差进行迭代学习控制(ILC),并将ILC的结果用于调整参考轮廓,形成修正参考轮廓,以获得更好的跟踪性能,从而改善轮廓精度。接着,利用互补滑模控制器(CSMC)抑制系统中参数变化、外部扰动、非线性摩擦等不确定性因素的影响,提高单轴的鲁棒性能和跟踪性能。最后,系统实验结果表明,该控制方法能够明显地提高系统的控制性能,减小系统的轮廓误差,进而改进直驱XY平台伺服系统的高精度轮廓加工性能。  相似文献   

7.
执行重复性运动任务的永磁直线同步电动机(PMLSM)伺服系统易受参数变化、未建模动态、摩擦力和推力波动等周期性扰动的影响,导致系统无法长期稳定运行,故采用周期性学习扰动观测器(PLDOB)来削弱这些扰动。首先利用扰动观测器(DOB)估计初始周期内的扰动,然后将所估计的扰动作为PLDOB中周期学习律的初始条件,进而校正每个后继周期内的扰动。该方法直接从扰动的角度设计,不仅能在保证系统长期稳定运行的前提下使跟踪误差快速收敛到零,同时还可以补偿DOB中Q-滤波器带宽以外的扰动以及扰动的相位滞后。实验结果表明所提控制方案是有效的,明显提高了系统的跟踪性能和抗扰性能。  相似文献   

8.
针对直驱XY平台在加工高速度和尖角轮廓时精度较差的问题,提出一种在全局任务坐标系(GTCF)中采用迭代学习控制(ILC)和互补滑模控制(CSMC)相结合的轮廓控制方法。首先,利用实际轮廓误差的一阶导数构建轮廓误差模型,并将轮廓误差和轮廓运动轨迹作为控制变量建立GTCF,使系统能够协调运行。然后,采用ILC对轮廓跟踪过程中的未建模动态进行补偿,并利用CSMC抑制直驱XY平台伺服系统中参数变化、外部扰动等不确定性因素的影响。最后,系统实验结果表明,该控制方法具有较强的鲁棒性和快速的轮廓跟踪性,能够实现更精确的控制性能,减小系统的轮廓误差,进而改进直驱XY平台伺服系统的高精度轮廓加工性能。  相似文献   

9.
基于ZPETC和DOB的永磁直线同步电机的鲁棒跟踪控制   总被引:1,自引:1,他引:1  
针对高精度永磁直线同步电机直接驱动伺服系统,提出了一种将零相位误差跟踪控制器(ZPETC)和干扰观测器(DOB)相结合的鲁棒跟踪控制策略,以提高系统的跟踪性能和鲁棒性能。ZPETC作为前馈跟踪控制器,保证了快速性,使系统实现准确跟踪;基于DOB的鲁棒反馈控制器补偿了外部扰动、未建模动态、系统参数变化和机械非线性等,保证了系统的强鲁棒性。仿真结果表明,所提出的控制方案在保证系统实现完好跟踪的同时,又具有较强的鲁棒性,从而改善了数控机床进给系统的定位精度,进而提高了轮廓加工精度。  相似文献   

10.
永磁直线同步电机的智能互补滑模控制   总被引:1,自引:0,他引:1  
针对永磁直线同步电机(PMLSM)伺服系统的位置跟踪精度问题,提出了一种基于径向基函数(RBF)神经网络的智能互补滑模控制(ICSMC)方法。建立了包含端部效应、参数变化、外部扰动及非线性摩擦等不确定性因素的PMLSM动态方程。设计了互补滑模控制器,采用广义滑模面和互补滑模面相结合的设计,降低了系统跟踪误差,提高了系统响应速度,并削弱了抖振现象;利用RBF神经网络直接对系统存在的不确定性进行估计,在线调整RBF网络参数以改善系统动态性能,提高系统鲁棒性,并用李雅普诺夫定理保证系统闭环稳定性。通过分析系统实验结果,验证了所提出的控制方法有效降低了系统跟踪误差,并使系统具有良好的动态性能和鲁棒性能。  相似文献   

11.
为了提高轮廓加工精度,本文针对高精度直线伺服系统,提出了一种将零相位误差跟踪控制器(ZPETC)和干扰观测器(DOB)相结合的鲁棒跟踪控制策略.ZPETC作为前馈跟踪控制器,保证了快速性,使系统实现准确跟踪;基于DOB的鲁棒反馈控制器补偿了外部扰动、未建模动态、系统参数变化和机械非线性等,保证了系统的强鲁棒性能.仿真结果表明了所提出的控制方案是有效的,既能实现完好跟踪,又有较强的鲁棒性能.从而有效地减小了轮廓误差,提高了轮廓加工精度.  相似文献   

12.
内模控制(IMC)因其结构简单、易于实现已得到广泛应用,但传统IMC不能有效消除电机运行过程中存在的参数摄动、负载扰动及一些不确定干扰,从而影响了其在高性能变频调速系统中的应用。为提高系统的抗扰动性能,提出一种基于干扰观测器(DOB)的感应电机IMC-DOB方法,基于感应电机的数学模型设计了DOB,并对DOB的结构进行了理论分析。实验结果表明,DOB可实时估计出系统的扰动值,所提方法在系统发生参数摄动和负载突变时,能在保持传统IMC快速响应动态性能的同时,并对干扰具有较好的鲁棒性。  相似文献   

13.
针对永磁直线同步电机(PMLSM)易受系统参数变化、外部扰动、摩擦力等不确定性因素影响的问题,采用二阶滑模控制(2OSMC)和递归径向基神经网络(RRBFNN)相结合的智能二阶滑模控制(I2OSMC)方法来提高系统控制性能.利用2OSMC削弱传统滑模控制中的抖振问题,提高了系统的位置跟踪精度.但由于难以估计系统中不确定性因素的边界,从而无法实现2OSMC的最佳性能,因此,引入RRBFNN对不确定性因素进行估计.由于RRBFNN具有较快的学习能力,可通过在线训练网络参数,进而提高系统的鲁棒性.实验结果表明,所提出的控制方法切实可行,能够有效地抑制不确定性因素对系统的影响,使系统具有较高的位置跟踪精度和较强的鲁棒性能.  相似文献   

14.
针对永磁直线同步伺服电机(PMLSM)直接驱动伺服系统,提出了一种将变增益零相位误差跟踪控制(VGZPETC)和H∞鲁棒控制相结合的鲁棒跟踪控制策略,以解决系统的快速而精确的跟踪性能和抗扰性能之间的矛盾。变增益零相位误差跟踪控制器克服了建模误差、系统参数变化等的影响,保证了快速性,使系统实现准确跟踪;而H∞控制器克服了负载扰动等不确定性影响,保证了系统具有较强的鲁棒性能。仿真结果表明,该方案在保证伺服系统的快速精确跟踪性的同时,对系统参数变化和阻力扰动具有很强的鲁棒性。  相似文献   

15.
针对直接驱动的永磁直线同步电机(PMLSM)伺服系统,在分析研究PMLSM的端部效应负载扰动及系统参数变化等不确定性因素对伺服系统性能影响的基础上,提出了一种将学习前馈控制和H∞鲁棒控制相结合的鲁棒跟踪控制策略.为消除端部效应的影响,采用基于B样条网络的学习前馈补偿控制技术,从而达到了良好的补偿效果;为克服不确定性扰动的影响,采用H∞鲁棒控制,从而保证系统有较强的鲁棒性.仿真结果表明,该方案保证了伺服系统快速而准确跟踪,同时有效地降低了不确定性扰动对系统性能的影响,从而提高了直线伺服系统的跟踪性能和鲁棒性能.  相似文献   

16.
针对永磁直线同步电动机(permanent magnet linear synchronous motor,PMLSM)驱动的数控机床易受参数变化、负载扰动以及摩擦力等不确定性影响的问题,提出一种基于质量辨识扰动观测器(disturbance observer with mass identification,DOB-MI)的自适应反推互补滑模控制(adaptive backstepping complementary sliding mode control,ABCSMC)策略。设计 ABCSMC 方法抑制不确定对系统的影响。通过引入自适应律,ABCSMC 的边界层能够实现动态变化,保证系统具有全局鲁棒性,且 ABCSMC 可对不确定性在线估计并调整,从而提高位置跟踪精度。由于在实际应用中,负载质量变化会对系统性能造成极大的影响,因此,利用离散模型参考自适应辨识理论,设计 DOB-MI 辨识动子质量并计算出补偿电流以补偿负载扰动对系统的影响。仿真与实验结果表明,该方法提高了系统的位置跟踪精度,对参数变化和负载扰动等不确定性具有极强的抑制能力。  相似文献   

17.
针对永磁直线同步伺服电机(PMLSM)直接驱动伺服系统,提出了一种将零相位误差跟踪控制(ZPETC)和H∞鲁棒控制相结合的二自由度鲁棒跟踪控制策略,以解决系统的快速而精确的跟踪控制性能和抗扰性能之间的矛盾.零相位误差跟踪控制器保证了快速性,使系统实现准确跟踪;而H∞控制器克服了负载扰动等不确定性影响,保证了系统具有较强的鲁棒性能.仿真结果表明,该方案在保证伺服系统的快速精确跟踪性的同时,对系统参数变化和阻力扰动具有很强的鲁棒性.  相似文献   

18.
将扰动观测器(DOB)用于永磁同步电机(PMSM)的控制能够有效抑制外部力矩扰动,但由于PMSM参数存在时变和不确定性,导致DOB的控制品质下降。提出采用递推加权最小二乘法对变化后的转动惯量进行辨识,将修正后的转动惯量用于DOB。仿真试验表明,该方法能够高精度地对转动惯量进行实时在线辨识,提高了电机在变负载情况下的抗外部力矩扰动的能力。  相似文献   

19.
针对永磁直线同步电机(PMLSM)迭代学习控制(ILC)过程中,由于扰动及时间滞后引起的系统不稳定、误差难以收敛及跟踪精度下降等问题,提出一种基于Smith预估和性能加权函数的鲁棒ILC方案。Smith预估器与ILC相结合,可在不需要PMLSM精确数学模型的情况下,减少时间滞后对系统跟踪性能的影响,避免迭代过程中由于时间滞后的累积而引起的系统不稳定。由于系统存在外部扰动、参数变化、端部效应等不确定因素,充分利用性能加权函数的信息设计反馈控制器,在满足鲁棒收敛条件情况下,可使位置误差收敛到期望值。实验结果表明,所提出的控制方案可以提高PMLSM伺服系统的位置跟踪精度,增强系统的鲁棒性。  相似文献   

20.
为提高永磁直线同步电动机(PMLSM)伺服系统的控制性能,解决参数变化、外部扰动和摩擦力等不确定性因素对系统影响的问题,提出一种基于函数链径向基神经网络(FLRBFNN)的自适应反推控制(ABC)方法。首先建立含有不确定性因素的PMLSM动态模型;其次,利用ABC中的自适应律对系统总不确定性进行估计,但在设计ABC时存在大量求导运算,以至于产生"微分爆炸"现象。因此,为解决这一问题并进一步提高系统性能,采用FLRBFNN在线学习并调整控制器参数,FLRBFNN将径向基神经网络(RBFNN)和函数链神经网络(FLNN)相结合,利用FLNN增大神经网络搜索空间,提高网络收敛速度和收敛精度,从而提高RBFNN估计系统不确定性的能力,有效降低不确定性因素对系统的影响。实验结果表明,该方法切实可行,与ABC相比,能够使系统具有较强的鲁棒性能和跟踪性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号