首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electro-hydraulic servo-systems are widely employed in industrial applications such as robotic manipulators, active suspensions, precision machine tools and aerospace systems. They provide many advantages over electric motors, including high force to weight ratio, fast response time and compact size. However, precise control of electro-hydraulic systems, due to their inherent nonlinear characteristics, cannot be easily obtained with conventional linear controllers. Most flow control valves can also exhibit some hard nonlinearities such as dead-zone due to valve spool overlap. This work describes the development of an adaptive fuzzy sliding mode controller for an electro-hydraulic system with unknown dead-zone. The boundedness and convergence properties of the closed-loop signals are proven using Lyapunov stability theory and Barbalat’s lemma. Numerical results are presented in order to demonstrate the control system performance.  相似文献   

2.
一个多机器人制造系统的设计与实现   总被引:3,自引:0,他引:3  
张卫星  陈卫东  秦志强 《机器人》2003,25(5):385-389
本文构建了一个包含多个机器人和自动化物流单元的柔性制造系统,其中机器人部分包括一个自动导引小车和两台装配机器人,物流单元部分包括一个小型立体仓库和一条自动传输线.系统采用递阶分散式的体系结构,每个作业单元均有独立的控制器,并通过串行接口实现与主控计算机的实时通讯.在对系统作业任务进行有限状态机建模的基础上,采用基于事件的控制思想实现了多个作业单元的协调控制,提高了系统的柔性和鲁棒性,实验结果也证明了系统设计的有效性.  相似文献   

3.
《Advanced Robotics》2013,27(4):401-414
Dexterity is an important issue for the design, trajectory planning and control of robotic manipulators. However, even though a lot of robot manipulators are driven by DC motors, no dexterity measures were introduced to evaluate how efficient a manipulator system is for performing a required task in the case of taking the limit-driven characteristics of the DC motor into consideration. In this study, we introduce a new kinetostatic dexterity index to measure the task-executing ability of robotic manipulators where the possible maximum velocity and force of the required task are derived subject to the heat-converted power limit of the DC motor. The measure is to evaluate how efficient a manipulator system is to execute a required task, while the limit-driven characteristics of its actuators are taken into consideration. Two examples are used to show that the proposed dexterity index is task-dependent and changed due to the tasks.  相似文献   

4.
This article presents a systematic method of modeling and implementing real-time control for discrete-event robotic systems using Petri nets. Because, in complex robotic systems such as flexible manufacturing systems, the controllers are distributed according to their physical structure, it is desirable to realize real-time distributed control. In this article, the task specification of robotic processes is represented as a system control-level net. Then, based on the hierarchical approach, it is transformed into detailed subnets, which are decomposed and distributed into the local machine controllers. The implementation of real-time distributed control through communication between the system controller and the machine controllers on a microcomputer network is described for a sample robotic system. The proposed implementation method is sufficiently general, and can be used as an effective prototyping tool for consistent modeling, simulation, and real-time control of large and complex robotic systems.  相似文献   

5.
The advent of reconfigurable manufacturing systems (RMSs) has given rise to a challenging problem, i.e., how to reconfigure rapidly and validly a RMS supervisory controller in response to frequent changes in the manufacturing system configuration driven by fluctuating market. This paper presents an improved net rewriting system (INRS)-based method for automatic reconfiguration of Petri net (PN) supervisory controllers for RMS. We begin with presenting the INRS which overcomes the limitations of the net rewriting system and can dynamically change the structure of a PN without damaging its important behavioral properties. Based on INRS, a method for design reconfigurable PN controllers of RMS is introduced. Subsequently, we presented an INRS-based method for rapidly automatic reconfiguration of this class of PN controllers. In the reconfiguration method, changes in a RMS configuration can be formalized and act on an existing controller to make it reconfigure rapidly into a new one. Noticeably, no matter the design or reconfiguration, the expected behavioral properties of the resultant PN controllers are guaranteed. Thus, efforts for verification of the results can be avoided naturally. We also illustrate the reconfiguration of a PN controller for a reconfigurable manufacturing cell.  相似文献   

6.
In the last two decades, robotic systems have achieved wide applications in every aspect of human society, including industrial manufacturing, automotive production, medical devices, and social lives. With the  相似文献   

7.
An Adaptive Regulator of Robotic Manipulators in the Task Space   总被引:1,自引:0,他引:1  
This note addresses the problem of position control of robotic manipulators both nonredundant and redundant in the task space. A computationally simple class of task space regulators consisting of a transpose adaptive Jacobian controller plus an adaptive term estimating generalized gravity forces is proposed. The Lyapunov stability theory is used to derive the control scheme. The conditions on controller gains ensuring asymptotic stability are obtained herein in a form of simple inequalities including some information extracted from both robot kinematic and dynamic equations. The performance of the proposed control strategy is illustrated through computer simulations for a direct-drive arm of a SCARA type redundant manipulator with the three revolute kinematic pairs operating in a two-dimensional task space.  相似文献   

8.
In this paper, an adaptive neural network (NN) switching control strategy is proposed for the trajectory tracking problem of robotic manipulators. The proposed system comprises an adaptive switching neural controller and the associated robust compensation control law. Based on the Lyapunov stability theorem and average dwell-time approach, it is shown that the proposed control scheme can guarantee tracking performance of the robotic manipulators system, in the sense that all variables of the closed-loop system are bounded and the effect due to the external disturbance and approximate error of radical basis function (RBF) NNs on the tracking error can be converged to zero in an infinite time. Finally, simulation results on a two-link robotic manipulator show the feasibility and validity of the proposed control scheme.  相似文献   

9.
The ever increasingly stringent performance requirements of industrial robotic applications highlight significant importance of advanced robust control designs for serial robots that are generally subject to various uncertainties and external disturbances. Therefore, this paper proposes and investigates the design and implementation of a robust adaptive fuzzy sliding mode controller in the task space for uncertain serial robotic manipulators. The sliding mode control is well known for its robustness to system parameter variations and external disturbances, and is thus a highly desirable and cost-effective approach to achieve high precision control task for serial robots. The proposed controller is designed based on a fuzzy logic approximation to accomplish trajectory tracking with high accuracy and simultaneously attenuate effects from uncertainties. In the controller, the high-frequency uncertain term is approximated by using a fuzzy logic system while the low-frequency term is adaptively updated in real time based on a parametric adaption law. The control efficacy and effectiveness of the proposed control algorithm are comparatively verified against a recently proposed conventional controller. The test results demonstrate that the proposed controller has better trajectory tracking performances and is more robust against large disturbances than the conventional controller under the same operating conditions.  相似文献   

10.
This paper investigates the problem of networked control system for nonlinear robotic manipulators under time delays and packet loss by using passivity technique. With the utilisation of wave variables and a passive remote controller, the networked robotic system is demonstrated to be stable with guaranteed position regulation. For the input/output signals of robotic systems, a discretisation block is exploited to convert continuous-time signals to discrete-time signals, and vice versa. Subsequently, we propose a packet management, called wave-variable modulation, to cope with the proposed networked robotic system under time delays and packet losses. Numerical examples and experimental results are presented to demonstrate the performance of the proposed wave-variable-based networked robotic systems.  相似文献   

11.
In this paper, a fully distributed control scheme for aerial cooperative transporting and assembling is proposed using multiple quadrotor–manipulator systems with each quadrotor equipped with a robotic manipulator. First, the kinematic and dynamic models of a quadrotor with multi-Degree of Freedom (DOF) robotic manipulator are established together using Euler–Lagrange equations. Based on the aggregated dynamic model, the control scheme consisting of position controller, attitude controller and manipulator controller is presented. Regarding cooperative transporting and assembling, multiple quadrotor–manipulator systems should be able to form a desired formation without collision among quadrotors from any initial position. The desired formation is achieved by the distributed position controller and attitude controller, while the collision avoidance is guaranteed by an artificial potential function method. Then, the transporting and assembling tasks request the manipulators to reach the desired angles cooperatively, which is achieved by the distributed manipulator controller. The overall stability of the closed-loop system is proven by a Lyapunov method and Matrosov's theorem. In the end, the proposed control scheme is simplified for the real application and then validated by two formation flying missions of four quadrotors with 2-DOF manipulators.  相似文献   

12.
Multi-joint manipulator systems are subject to nonlinear influences such as frictional characteristics, random disturbances and load variations. To account for uncertain disturbances in the operation of manipulators, we propose an adaptive manipulator control method based on a multi-joint fuzzy system, in which the upper bound information of the fuzzy system is constant and the state variables of the manipulator control system are measurable. The control algorithm of the system is a MIMO (multi-input-multi-output) fuzzy system that can approximate system error by using a robust adaptive control law to eliminate the shadow caused by approximation error. It can ensure the stability of complex manipulator control systems and reduce the number of fuzzy rules required. Comparison of experimental and simulation data shows that the controller designed using this algorithm has highly-precise trajectory-tracking control and can control robotic systems with complex characteristics of non-linearity, coupling and uncertainty. Therefore, the proposed algorithm has good practical application prospects and promotes the development of complex control systems.  相似文献   

13.
Supervisory control in manufacturing systems is achieved through messages between the supervisory controller and processing devices. This paper presents a message-oriented model for supervisory control. The model supports realistic states for processing stations and some material handling devices. The major characteristics of the model are the decomposition of the system into small state models for components that cooperate via messaging as well as the algebraic manipulation for state progression. This paper also presents a definition of controllability meaningful in the design and analysis of supervisory control systems. The modeling and analysis are illustrated with a flow line example and a robotic cell example.  相似文献   

14.
Obituary     
A model-based decentralized adaptive controller is proposed for multiple manipulators in a class of co-operations called holonomic co-operations, in which the manipulators are holonomically constrained. In this controller we calculate the control input and estimate unknown robotic parameters in individual state spaces of the manipulators instead of that of the whole system. Consequently, no coordinator exists in the system and the control architecture is decentralized. The model-based adaptive algorithm is used to estimate the unknown or uncertain parameters. It is proven that a Lyapunov function guarantees asymptotic convergence of tracking errors of both the trajectory and interactive force among the manipulators. We also discuss issues regarding communication among the robots according to motion constraints associated with the co-operation. Finally, the validity and performance of the proposed method are verified by simulations on two six-DOF manipulators.  相似文献   

15.
16.
Dynamic coordinated control of two robot manipulators that rigidly grasp a common object is studied. A dynamic coordinated control model for the two manipulators is derived that is suitable for system analysis and design in state space. The model takes into account kinematic and dynamic constraints between the two manipulators, and is explicitly described by non-linear state equtions and non-linear output equations in the state space. Since coordinated control requires the control of forces applied to the object by manipulators, the output equations include both position components and force components. While robotic systems with position outputs can be linearized using a static state feedback, systems with force outputs, such as the present two robot system, require a dynamic non-linear state feedback for exact linearization. By using dynamic non-linear feedback, coordinated control of two robotic manipulators is converted into a control problem of linear systems.  相似文献   

17.
An adaptive learning tracking control scheme is developed for robotic manipulators by a synthesis of adaptive control and learning control approaches. The proposed controller possesses both adaptive and learning properties and thereby is able to handle robotic systems with both time-varying periodic uncertainties and time invariant parameters. Theoretical proofs are established to show that proposed controllers ensure asymptotical tracking performance. The effectiveness of the proposed approaches is validated through extensive numerical simulation results.  相似文献   

18.
Flexible manufacturing systems (FMS) are essential for small/medium batch and job shop manufacturing. These types of production systems are used to manufacture a considerable variety of products with medium/small production volumes. Therefore, the manufacturing platforms supporting these types of production must be flexible and organized in flexible manufacturing cells (FMC). Programming FMCs remains a difficult task and is an actual area of research and development. This paper reports an object-oriented approach developed for FMC programming. The work presented was first thought for application in industrial robot manipulators, and later extended to other FMC equipments just by putting the underlying ideas in a general framework. Initially, the motivation for this work was to develop means to add force control to a standard industrial robot manipulator. This problem requires remote access to the robot controller, remote programming and monitoring, as also is required to program and monitor any other FMC equipment. The proposed approach is distributed based on a client/server model and runs on Win32 platforms, i.e., Microsoft Windows and Windows NT. Implementation for the special case of industrial robot manipulators is presented, along with some application examples used for educational, research and industrial purposes.  相似文献   

19.
This work proposes a gain scheduling adaptive control scheme based on fuzzy systems, neural networks and genetic algorithms for nonlinear plants. A fuzzy PI controller is developed, which is a discrete time version of a conventional one. Its data base as well as the constant PI control gains are optimally designed by using a genetic algorithm for simultaneously satisfying the following specifications: overshoot and settling time minimizations and output response smoothing. A neural gain scheduler is designed, by the backpropagation algorithm, to tune the optimal parameters of the fuzzy PI controller at some operating points. Simulation results are shown to demonstrate the efficiency of the proposed structure for a DC servomotor adaptive speed control system used as an actuator of robotic manipulators.  相似文献   

20.
Binary actuators have only two discrete states, both of which are stable without feedback. As a result, manipulators with binary actuators have a finite number of states. The major benefits of binary actuation are that extensive feedback control is not required, reliability and task repeatability are very high, and two-state actuators are generally very inexpensive, resulting in low cost robotic mechanisms. These manipulators have great potential for use in both the manufacturing and service sectors, where the cost of high performance robotic manipulators is often difficult to justify. The most difficult challenge with a binary manipulator is to achieve relatively continuous end-effector trajectories given the discrete nature of binary actuation. Since the number of configurations attainable by binary manipulators grows exponentially in the number of actuated degrees of freedom, calculation of inverse kinematics by direct enumeration of joint states and calculation of forward kinematics is not feasible in the highly actuated case. This paper presents an efficient method for performing binary manipulator inverse kinematics and trajectory planning based on having the binary manipulator shape adhere closely to a time-varying curve. In this way the configuration of the arm does not exhibit drastic changes as the end effector follows a discrete trajectory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号