首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
980nm波段掺镱光纤激光器在高亮度抽运源和蓝绿光源方面具有广泛的应用前景。首先介绍了980nm波段连续光纤激光器的研究价值、研究难点。然后,介绍了国内外研究机构在980nm波段连续光纤激光器和放大器方面的研究进展和存在的问题。最后对980nm波段连续光纤激光器和放大器未来发展方向进行探讨。  相似文献   

2.
刘泽金  肖虎  周朴  王小林  陈金宝 《中国激光》2012,39(3):305009-8
高亮度抽运源和有效的热管理方案是实现高功率光纤激光输出的关键。受限于目前高亮度激光二极管的制造工艺水平,由激光二极管直接抽运的掺镱光纤激光器输出功率一直停留在千瓦级水平。采用1018nm光纤激光对掺镱光纤进行同带抽运,可在提高抽运源亮度的同时降低掺镱光纤内的热负荷,被公认为是进一步提升掺镱光纤激光器输出功  相似文献   

3.
1.0 m波段的超短脉冲激光器在激光加工、光学精密测量和生物医学等领域具有重要应用价值,但由于掺镱光纤激光器工作在全正色散区域,激光器直接输出的脉冲通常宽度较大。文中利用改变微纳光纤尺寸可以使其在1.0 m波段提供反常色散的特点,将微纳光纤作为色散补偿元件在掺镱光纤激光器腔外对脉冲进行压缩来获得超短脉冲。实验中,自主拉制的微纳光纤锥腰直径为3 m,锥腰长度为5 cm。掺镱光纤激光器直接输出脉冲宽度为37.6 ps,经微纳光纤压缩后脉冲宽度为8.5 ps。该结果提供了一种更简便低廉的压缩脉冲方法。  相似文献   

4.
报道了一种简单结构的超宽带ASE光纤光源,采用两个相同的980 nm半导体激光器对同一段掺铒光纤进行抽运,通过选择合适的掺铒光纤长度及调节两个抽运源的抽运功率,获得了带宽大于80 nm、输出功率21 mW的C L波段的ASE荧光输出。  相似文献   

5.
超宽带ASE光纤光源研究   总被引:1,自引:0,他引:1  
报道了一种简单结构的超宽带ASE光纤光源,采用两个相同的980nm半导体激光器对同一段掺铒光纤进行抽运,通过选择合适的掺铒光纤长度及调节两个抽运源的抽运功率,获得了带宽大于80nm、输出功率21mW的C L波段的ASE荧光输出。  相似文献   

6.
对980nm抽运的双包层Yb/Er共掺光纤激光器进行了数值模拟,分析了稳态情况下光纤中上能级粒子数,抽运光功率,信号光功率沿光纤轴向的分布.计算了激光器输出功率与光纤长度的关系,激光器输出腔镜反射率与输出功率的关系.根据数值模拟的结果,采用4m长的铒镱共掺双包层光纤作为增益介质,反射率为15%的双包层光纤光栅作输出腔镜组建了全光纤激光器,其斜率效率为40%.在3.4W的最大抽运功率下,得到了1.25W的激光输出,输出光谱宽度为0.49nm.  相似文献   

7.
一种低成本简化结构的超宽带光纤光源   总被引:1,自引:0,他引:1  
陈爽  冯莹  魏立安 《半导体光电》2006,27(4):363-365
报道了一种新型的低成本、简化结构的超宽带光纤光源.不同于常规的超宽带光纤光源,该结构只用了一个980 nm半导体激光器作为抽运源.通过调整抽运功率和掺铒光纤长度,得到了80 nm带宽的C L波段的宽带光输出.  相似文献   

8.
种兰祥  李建郎 《中国激光》2007,34(3):345-349
抽运旁通腔型的掺镱光纤(YDF)激光器内剩余的抽运光功率随着入射抽运功率的变化呈现出光学双稳特性,这导致了用它来抽运另一个分叉腔的铒镱共掺光纤(EYDF)增益介质可获得第二个信号波长激发的可能性。根据这一原理,从实验上获得了1040 nm和1537 nm两个激发线的可切换振荡,这表明基于掺镱光纤激光器光学双稳态的复合腔结构(掺镱光纤激光器的抽运旁通腔和铒镱共掺光纤分叉腔)是实现切换式双波长光纤激光器光源的一个简单有效的方法。  相似文献   

9.
针对小芯径双包层掺镱光纤实现高功率光纤激光器的输出方案展开了理论研究,分析了双包层掺镱光纤的必要性和可行性,着重研究了高功率光纤激光器的基本原理,并给出了光源及放大器部分系统设计方案。系统仿真实验证明,能够获得高功率的1018nm激光信号。  相似文献   

10.
980nm单模掺镱光纤激光器   总被引:1,自引:0,他引:1       下载免费PDF全文
从速率方程出发,理论推导了准三能级掺镱光纤激光器的斜效率,泵浦阈值功率,最佳光纤长度和输出功率的表达式,并理论分析了掺镱光纤中的准三能级和四能级增益关系,为抑制四能级起振提供理论依据。根据理论分析结果,实验中选定了光纤最佳长度、腔镜反射率等参数,最终获得最大输出功率为372mW的980nm单模激光输出,斜效率为21.2%,实验结果与数值模拟结果一致。此外,还对激光器的自脉动效应和不稳定性进行了简单分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号