首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 426 毫秒
1.
The biological reduction of uranium from soluble U(VI) to insoluble U(IV) has shown potential to prevent uranium migration in groundwater. To gain insight into the extent of uranium reduction that can occur during biostimulation and to what degree U(IV) reoxidation will occur under field relevant conditions after biostimulation is terminated, X-ray absorption near edge structure (XANES) spectroscopy was used to monitor: (1) uranium speciation in situ in a flowing column while active reduction was occurring; and (2) in situ postbiostimulation uranium stability and speciation when exposed to incoming oxic water. Results show that after 70 days of bioreduction in a high (30?mM) bicarbonate solution, the majority (>90%) of the uranium in the column was immobilized as U(IV). After acetate addition was terminated and oxic water entered the column, in situ real-time XANES analysis showed that U(IV) reoxidation to U(VI) (and subsequent remobilization) occurred rapidly (on the order of minutes) within the reach of the oxygen front and the spatial and temporal XANES spectra captured during reoxidation allowed for real-time uranium reoxidation rates to be calculated.  相似文献   

2.
Time–cost trade-off analysis is addressed as an important aspect of any construction project planning and control. Nonexistence of a unique solution makes the time–cost trade-off problems very difficult to tackle. As a combinatorial optimization problem one may apply heuristics or mathematical programming techniques to solve time–cost trade-off problems. In this paper, a new multicolony ant algorithm is developed and used to solve the time–cost multiobjective optimization problem. Pareto archiving together with innovative solution exchange strategy are introduced which are highly efficient in developing the Pareto front and set of nondominated solutions in a time–cost optimization problem. An 18-activity time–cost problem is used to evaluate the performance of the proposed algorithm. Results show that the proposed algorithm outperforms the well-known weighted method to develop the nondominated solutions in a combinatorial optimization problem. The paper is more relevant to researchers who are interested in developing new quantitative methods and/or algorithms for managing construction projects.  相似文献   

3.
Russian Journal of Non-Ferrous Metals - The influence of temperature and time of recrystallization annealing on the characteristic temperatures of martensitic transformation and mechanical...  相似文献   

4.
Russian Journal of Non-Ferrous Metals - Technological regimes for producing wrought products (2 and 1 mm) from the Al–4.5%Zn–2.5%Mg–2.5%Ca–0.5%Fe–0.2%Zr–0.1%Sc...  相似文献   

5.
The time–cost trade-off is one of the most crucial aspects of construction project planning, which in fact is a combinatorial optimization problem. This technical note employed an evolutionary algorithm—ant colony optimization (ACO) algorithm to deal with the time–cost trade-off problems. Combining with the modified adaptive weight approach, the ACO algorithm can find out the optimal solutions, and define the Pareto front as well. The development of the ACO-based multiobjective approach in this technical note provides an attractive alternative to solving construction time–cost optimization.  相似文献   

6.
Tungsten is a refractory metal possessing good mechanical properties of high strength, high yield point, and high resistance to creep. Therefore, tungsten and its alloys are used in many high temperature applications. Due to the high melting point, they are generally processed through powder metallurgy method. The powders are compacted using die pressing or isostatic pressing. The compacts are sintered in a sintering furnace to achieve high density, thereby, making the metal suitable for further processing. This article reviews the recent research findings of consolidating tungsten and its alloys (W–Ni–Fe and W–Ni–Cu), from preparation of powder alloys to sintering of the compact. The advances in sintering are based on the objective of achieving good densification of the metal at lower temperature and at faster rate. The use of microwave sintering and spark plasma sintering techniques resulted in significant reduction in sintering time and producing products of good mechanical properties.  相似文献   

7.
《钢铁冶炼》2013,40(2):97-98
Abstract

A two-dimensional heat and fluid flow model was used to simulate the plasma arc furnace, where the flow is governed by the steady state incompressible Navier–Stokes equations. The flow has been taken as turbulent and the standard k-epsilon model was used to simulate the turbulence in the flow. The coupled non-linear differential equations were solved with suitable boundary conditions and temperature dependent plasma properties at atmospheric pressure by employing an efficient finite volume method. The calculations and heat transfer to various parts of the furnace were calculated for argon, nitrogen and hydrogen plasmas. The voltage–current characteristic for the different types of plasma and the effect of other process parameters on heat transfer are discussed.  相似文献   

8.
This article reviews the ongoing supply–demand crisis in internship availability and the models that have been proposed as solutions. “Restraint of trade” has been the chief argument used by regulating agencies to dampen solutions aimed at the demand side of the supply–demand crisis. We offer a legal analysis of the restraint of trade argument and offer a solution to the crisis through utilization of the Association of Psychology Postdoctoral and Internship Centers (APPIC) match program, accreditation of programs by the American Psychological Association, and/or development of internship programs by doctoral programs. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

9.
In the present work, ternary Al?CTi?CB master alloys have been prepared in an induction furnace by the reaction between preheated halide salts (K2TiF6 and KBF4) and liquid molten Al. A number of process parameters such as reaction temperature (800, 900, 1,000?°C), reaction time (45, 60, 75?min.) and compositions (Ti/B ratio: 5/1, 1/3) have been studied. The indigenously prepared master alloys were characterised by chemical analysis, particles size analysis, XRD and SEM/EDX microanalysis. Results of particle size analysis suggest that the sizes of the intermetallic particles [Al3Ti and TiB2 in Al?C5Ti?C1B and (Al, Ti)B2 in Al?C1Ti?C3B] present in various Al?CTi?CB master alloys increases with increase in reaction temperature (800?C1,000?°C) and reaction time (45?C75?min.). The population of the particles decreases with increase in reaction time and temperature. Further, SEM/EDX studies revealed that different morphologies of the intermetallic particles were observed at different reaction temperatures and reaction times. Further, the performances of the above-prepared master alloys were assessed for their grain refining efficiency on Al?C7Si alloy by macroscopy, DAS analysis. Grain refinement studies suggest that, B-rich Al?C1Ti?C3B master alloy shows better grain refinement performance on Al?C7Si alloy when compared to Ti-rich Al?C5Ti?C1B master alloy.  相似文献   

10.
β-Titanium alloys form one of the most versatile classes of structural materials due to their high specific strength, good hardenability, crack propagation resistance and substantial ductility. β-Titanium alloy with a composition (in wt%) of Ti–5Al–5Mo–5V–1Cr–1Fe was processed by double vacuum arc remelting route. In the present work, the effect of boron addition (up to 0.12 wt%) on the as-cast microstructure and β-transus (Tβ) of the alloy was studied using characterization tools like optical microscopy, electron back scattered diffraction, scanning electron microscopy, differential scanning calorimetry (DSC) and dilatometry. It was observed that boron addition has resulted in refinement of the as-cast microstructure due to precipitation of titanium boride whiskers along the grain boundaries. The DSC and dilatometry studies on the as-cast alloy revealed significant effect of boron addition on thermal stability of the alloy.  相似文献   

11.
The present study investigates the effect of compaction pressure and sintering temperature on densification response and mechanical properties of the Al–3.8Cu–1Mg–0.8Si–0.3Sn (2712) alloy. The compacts were pressed at 200 and 400 MPa and sintered at temperatures ranging from 570–630°C in vacuum (10?6 Torr). The objective of the present work is to obtain an optimum sintering conditions for achieving higher sintered densities and mechanical properties. The effect of sintering temperature is evaluated by measuring the sintered density, densification parameter, microstructure, phase changes and mechanical properties. While a higher sintering temperature results in densification enhancement, it also leads to microstructural coarsening. Significant improvement in mechanical properties is obtained through age-hardening of sintered alloy under various ageing conditions (T4, T6 and T8).  相似文献   

12.
Powder Metallurgy and Metal Ceramics - The structural features, hardness, elastic modulus, and wear resistance of Fe–Cu–Ni–Sn composites with different CrB2 contents, produced by...  相似文献   

13.
Parallel experimentation allowing comparison of magnetite–hematite–goethite inland and hematite–goethite coastal mill blends in terms of sintering performance is reported. Magnetite–hematite–goethite blend affords slightly lower productivity, tumble index, and yield than hematite–goethite blend. However, magnetite–hematite–goethite blend required 9.2 kg · t?1 lower solid fuel rate than the hematite–goethite blend. The lower sintering temperature of the magnetite–hematite–goethite blend than that of the hematite–goethite blend contributed to higher reducibility and lower low temperature degradation under reduction. Its sinter product also contained lower proportions of columnar silico-ferrite of calcium and alumina, magnetite, and fayalite.  相似文献   

14.
The AlFeCoNiCrTi high-entropy alloy (HEA) powders were prepared by high-energy ball milling. The ultrafine-grained WC–HEA and WC–Co-cemented carbides were fabricated through planetary ball milling and heat-pressure sintering. The microstructures and properties of the sintered alloys were compared using scanning electron microscope, X-ray diffraction, mechanical property testing and electrochemical testing. It has been shown that the AlFeCoNiCrTi HEA can be used as a binder for the ultrafine-grained WC-based cemented carbide. The WC–HEA-cemented carbide has better performances than the WC–Co-cemented carbide. The suitable contents of HEA can inhibit the WC grain growth and improve the mechanical properties and corrosion resistance of cemented carbides.  相似文献   

15.
Powder Metallurgy and Metal Ceramics - Traditionally, the soldering process was carried out, applying mainly lead-based solder materials. However, the prohibition against using lead (Pb) in...  相似文献   

16.
The structure and the properties of an Mg–Y–Nd–Zr alloy (WE43) are studied after high pressure torsion (HPT) in the temperature range 20–300°C. Structure refinement proceeds mainly by deformation twinning with the formation of a partial nanocrystalline structure with a grain size of 30–100 nm inside deformation twins. The WE43 alloy is shown to be aged during heating after HPT due to the decomposition of a magnesium solid solution. HPT at room temperature and subsequent aging causes maximum hardening. It is shown that HPT significantly accelerates the decomposition of a magnesium solid solution. HPT at all temperatures considerably increases the tensile strength and the yield strength upon tensile tests and significantly decreases plasticity. Subsequent aging additionally hardens the WE43 alloy. A potentiodynamic study shows that the corrosion resistance of this alloy after HPT increases. However, subsequent aging degrades the corrosion properties of the alloy.  相似文献   

17.
《粉末冶金学》2013,56(3):254-265
Abstract

Tungsten based W–1C and W–2B4C–1C (wt-%) powders synthesised by mechanical alloying (MA) for milling durations of 10, 20 and 30 h, in wet (ethanol) and dry conditions, were characterised. X-ray fluorescence spectroscopy investigations revealed Co contamination which increased with increasing milling time during wet milling. X-ray diffraction investigations revealed the presence of W and WC phases in all powders, Co3C intermetallic in the wet milled W–1C powders and W2B intermetallic phase in both wet and dry milled W–2B4C–1C powders. As blended and MA processed powders were consolidated into green compacts by uniaxial cold pressing at 500 MPa and solid phase sintered at 1680°C under hydrogen and argon atmospheres for 1 h. X-ray diffraction investigations revealed the presence of W2C intermetallic phase in sintered composites produced from both wet and dry milled W–1C powders and the W2B intermetallic phase in sintered material from the wet milled W–2B4C–1C powder. Sintered composites from wet milled powders showed relative densities >91%, with the maximum density of 99·5% measured for the sintered 30 h wet milled W–2B4C–1C composites. Microhardness values for the wet milled W–1C and W–2B4C–1C composites were 2–2·5 times higher than those for dry milled composite powders. A maximum hardness value of 23·7±2·1 GPa was measured for the sintered W–2B4C–1C composite wet milled for 20 h.  相似文献   

18.
Thermodynamic theory was used to calculate the formation temperature and site fraction of MC carbides in Fe–C–Ni–V–Ti system. The calculation results showed the...  相似文献   

19.
none 《粉末冶金学》2013,56(4):209-215
Abstract

The possibilities of the production of aluminium-base copper and/or silicon alloys by conventional powder compaction and sintering methods have been studied. The effects of various lubricants, pressing, and sintering conditions on the behaviour of Al–Cu and Al–Cu–Si alloys were evaluated systematically. The role of copper and silicon additions during compaction and sintering and their advantages or disadvantages are discussed. All alloys underwent large dimensional changes (sudden swelling followed by rapid contraction) during sintering at temperatures greater than Al–Cu eutectic temperature and it is suggested that a process of particle rearrangement is largely responsible for this behaviour. The mechanical properties of the alloys were highly dependent on the sintering temperature. PM/0215  相似文献   

20.
By means of optical microscope, scanning electron microscope, X-ray diffraction, energy dispersive spectrometer, Rockwell and Vickers hardness tester, and wear tester, the microstructure and properties of Fe–10Cr–1B–4Al alloy quenched in different temperature has been studied. The results show that the microstructure of as-cast Fe–10Cr–1B–4Al are composed of pearlite, ferrite and the eutectic borocarbide which shows a network distribution along grain boundaries. The eutectic borocarbides are composed of M7(C, B)3, M2(B, C) and M23(C, B)6. As the quenching temperature increases, the network structure of eutectic borocarbide breaks, but the type of eutectic borocarbide has no obvious change, and the matrix structure changes gradually from ferrite to pearlite. As the quenching temperature increases, the macro-hardness and the matrix micro-hardness of Fe–10Cr–1B–4Al alloy increases gradually. The macro-hardness and matrix micro-hardness of alloy reach the highest value of 45.7 HRC and 388.1 HV, respectively when the quenching temperature is 1150 °C. The hardness of alloy decreases slightly when the quenching temperature is too high. While quenching at 1150 °C, the alloy has the highest wear resistance and good comprehensive properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号