共查询到17条相似文献,搜索用时 62 毫秒
1.
本文在研究软件测试数据自动生成技术的基础上,为决解空间爆炸的问题提出了将一种新兴的智能算法—菌群算法应用到软件测试数据的自动生成当中。但为了能准确并快速的生成测试数据还对算法进行了改进,然后在用随机法随机生成的测试数据覆盖被测程序大部分路径的基础上,运用改进后的菌群算法对剩余指定路径进行覆盖从而达到路径全覆盖的效果,实现测试数据自动生成系统。最后用一个简单实验验证了该系统的有效性。 相似文献
2.
3.
将遗传算法应用于覆盖指定路径的测试数据生成已得到了广泛的研究.具体实现中,影响测试数据生成效率的因素很多,如先验知识,GA参数,路径复杂度等.本文在简要介绍应用GA生成测试数据的关键技术后,设计实验分析了影响测试数据生成的部分因素,并据此得出了一些结论. 相似文献
4.
基于蚁群算法的软件测试数据自动生成 总被引:16,自引:0,他引:16
傅博 《计算机工程与应用》2007,43(12):97-99,211
提出了一种基于蚁群算法的测试数据自动生成方法。该方法采用位串形式编码,实现了被测程序输入空间到蚂蚁路径网络的映射模型。根据程序插装函数定义的路径信息素轨迹强度,蚂蚁进行群体协作搜索最佳路径,生成测试数据。在基本蚁群算法基础上,通过引入变异算子和自适应挥发系数,提高了蚂蚁路径的多样性,克服了早熟停滞的缺陷。和模拟退火遗传算法进行了对比实验研究,结果表明了该方法的可行性,生成测试数据的效率优于模拟退火遗传算法。 相似文献
5.
数据自动生成是实现软件测试数据自动化和提高软件测试效率的关键问题。阐述了基于遗传算法、蚁群算法等启发式算法的测试数据自动生成系统模型与步骤,并对两系统的性能加以分析和比较,并讨论了一些改进方法。 相似文献
6.
测试数据自动生成是软件测试的基础,也是测试自动化技术实现的关键环节。为了提高测试自动化的效率,在 结合 测试数据自动生成模型的基础上,提出一种 传统遗传算法的改进算法。该算法使用了自适应交叉算子和变异算子,并引入模拟退火机制对其进行改进。同时,该算法还对适应度函数进行了合理的设计,以加速数据的优化过程。通过三角形程序、折半查找和冒泡排序程序,与基本遗传算法、自适应遗传算法进行了比较与分析,并且对改进算法做了性能分析。实验结果表明了该算法的实用性以及在测试数据生成中的可行性和高效性。 相似文献
7.
8.
测试数据的生成是实现软件测试自动化的关键,这一技术的实现大大节省了软件开发的时间和费用。利用遗传算法的理论与算法特点,建立了动态可变参数的测试数据自动生成工具。通过该工具的可视化界面可以动态地输入遗传算法参数,而且能够根据不同的路径选择输入相应的适应度函数,克服了以往在源代码中修改适应度函数的缺陷。最后通过两个实验,证明了算法的优越性。 相似文献
9.
基于选择性冗余思想,提出了一种测试数据自动生成算法.算法首先利用分支函数线性逼近和极小化方法,找出程序中所有可行路径,同时对部分可行路径自动生成适合的初始测试数据集;当利用分支函数线性逼近和极小化方法无法得到正确的测试数据时,基于使得测试数据集最小的原理和选择性冗余思想,针对未被初始测试数据集覆盖的谓词和子路径进行测试数据的增补.由于新算法结合谓词切片和DUC表达式,可以从源端判断子路径是否可行,因此能有效地降低不可行路径对算法性能的影响.算法分析和实验结果表明,该算法有效地减少了测试数据数量,提高了测试性能. 相似文献
10.
11.
12.
Previous research using genetic algorithms to automate the generation of data for path testing has utilized several different fitness functions, assessing their usefulness by comparing them to random generation. This paper describes two sets of experiments that assess the performance of several fitness functions, relative to one another and to random generation. The results demonstrate that some fitness functions provide better results than others, generating fewer test cases to exercise a given program path. In these studies, the branch predicate and inverse path probability approaches were the best performers, suggesting that a two‐step process combining these two methods may be the most efficient and effective approach to path testing. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
13.
14.
15.
Software testing is one of the significant stages in software development life cycle which is a costly and time‐consuming task. Automatic tests data generation is one of the traditional techniques to reduce the cost and time spent in software testing. Different evolutionary algorithms have been proposed to generate test data which cover target paths in a software program. In this paper, shuffled frog leaping algorithm (SFLA) is proposed to generate structural test data. The proposed SFLA algorithm is characterized by high convergence speed and simple implementation. In the proposed SFLA, branch coverage is used as the fitness function to generate effective test data. For comparing the performance of the proposed SFLA with genetic algorithm (GA), particle swarm optimization (PSO), ant colony optimization (ACO), and artificial bee colony (ABC), seven benchmark programs were used. The results indicated that the proposed SFLA has an average of 99.99% for branch coverage, average 99.97% for success rate, and 2.03 for the average number of generation for covering all branches. 相似文献
16.
Ricardo Ferreira Vilela João Choma Neto Victor Hugo Santiago Costa Pinto Paulo Sérgio Lopes de Souza Simone do Rocio Senger de Souza 《Concurrency and Computation》2023,35(2):e7489
Concurrent programming is increasingly present in modern applications. Although it provides higher performance and better use of available resources, the mechanisms of interaction between processes/threads result in a greater challenge for software testing activity. The nondeterminism present in those applications is one of the main issues during the test activity since the same test input can produce different possible execution paths, which may or not contain defects. The test data automatic generation can alleviate this problem, ensuring higher speed and reliability in software testing activity. This paper explores the automatic test data generation for concurrent programs through Genetic Algorithm, a bioinspired optimization technique, and proposes a test data generation approach for concurrent programs, called BioConcST, and a new operator for the selection of test subjects, called FuzzyST, which uses fuzzy logic. The approaches were evaluated in an experimental study towards their validation. The results showed that BioConcST is more promising than the other approaches at all analyzed levels. FuzzyST, together with Elitism and Tournament operators, provided the best results; however, it proved more suitable for concurrent programs of higher complexity. 相似文献
17.
设计了一个通用的基于控制流和数据流的结构测试数据自动生成的工具。该工具根据控制流和数据流测试中所采用的覆盖标准来选取测试路径,并以改进后的迭代松弛法为核心,对所选取的路径生成测试数据。同时工具采用Fibonacci法优化选取路径,对不可达路径进行处理,并对测试数据的分支覆盖率、DCP覆盖率等进行了统计。实验结果表明该工具是可行的。 相似文献