首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inhibitors of proteasomal functions Carbobenzoxy-L-leucyl-L-leucyl-L-leucinal (MG132) and Carbobenzoxy-L-isoleucyl-gamma-t-butyl-L-alanyl-L-leucinal (PSI) were found to inhibit the conversion of the Insulin proreceptor to its mature alpha and beta subunits. By contrast no effect of these inhibitors was found on 125-I insulin binding, internalization and degradation. Since the insulin proreceptor is an integral membrane protein that is compartmentally separated from the cytoplasmic 26S proteasome, the inhibition of the normal biosynthetic processing of the insulin proreceptor presents an anatomical paradox.  相似文献   

2.
We established a system of receptor chimeras that enabled us to induce heterodimerization of different cytoplasmic tails. Fusion constructs were created that are composed of the extracellular parts of the interleukin-5 receptor alpha and beta chains, respectively, and the transmembrane and intracellular parts of gp130, the signal transducing chain of the interleukin-6 receptor complex. In COS-7 transfectants we observed a dose-dependent interleukin-5-inducible STAT1 activation for which the presence of both the alpha and the beta chain chimera was needed. No STAT activity was detected if one of the cytoplasmic tails of the receptor complex was deleted, indicating that STAT activity resulted from a receptor dimer rather than from higher receptor aggregates. We further investigated whether dimerization of STAT1 depends on the juxtaposition of two STAT recruitment modules in a receptor complex. We show that a receptor dimer with only a single STAT1 docking site was still able to lead to STAT1 activation. This indicates that the formation of a paired set of STAT binding sites in a receptor complex is not the prerequisite for STAT factor dimerization. Our findings are discussed in view of alternative STAT dimerization models.  相似文献   

3.
To determine whether or not the dimeric structure of neuropeptide Y (NPY) that is found in solution is necessary for its function, we investigated the effects of covalent dimerization on the structure and function of NPY using the carboxy-terminal fragment, NPY(12-36), in which residues 12 and 31 (located at both ends of alpha-helical region) were replaced by Cys residues. Among the three species (the parallel dimer, the anti-parallel dimer, and the intramolecularly cross-linked monomer) obtained by oxidation of the fragment, the anti-parallel dimer was predominant. NMR analysis showed that both parallel and anti-parallel dimers had alpha-helices similar to that of intact NPY, suggesting that covalent dimerization might have little effect on the helical structure. A binding assay with Y2 receptors on porcine hippocampal membranes revealed that the IC50 value of the anti-parallel dimer was almost the same as that of NPY (13-36), which is known as a Y2-specific ligand. By contrast, the binding by the parallel dimer was weaker by more than one order of magnitude. Our results suggest that the formation of dimers of NPY is not essential for binding to the receptor.  相似文献   

4.
Direct measurement of the forces involved in protein-protein and protein-receptor interactions can, in principle, provide insight necessary for the advancement of structural biology, molecular biology, and the development of therapeutic proteins. The protein insulin is illustrative in this respect as the mechanisms of insulin dimer dissociation and insulin-insulin receptor binding are crucial to the efficacy of insulin medications for the control of diabetes. Insulin molecules, modified with a photochemically active azido functionality on specific residues, were attached to force microscope tips and opposing mica surfaces in configurations that would either favor or disfavor dimer formation. Force curve measurements performed in buffer solution revealed the complexity of the insulin monomer-monomer interaction with multiple unbinding events occurring upon tip retraction, suggesting disruption of discrete molecular bonds at the monomer-monomer interface. Furthermore, the force curves exhibit long-range unbinding events, consistent with considerable elongation of the insulin molecule prior to dissociation. The unbinding forces observed in this study are the result of a combination of molecular disentanglement and dimer dissociation processes.  相似文献   

5.
6.
Receptor dimerization is a crucial intermediate step in activation of signaling by receptor tyrosine kinases (RTKs). However, dimerization of the RTK Neu (also designated ErbB-2, HER-2, and p185(neu)), while necessary, is not sufficient for signaling. Earlier work in our laboratory had shown that introduction of an ectopic cysteine into the Neu juxtamembrane domain induces Neu dimerization but not signaling. Since Neu signaling does require dimerization, we hypothesized that there are additional constraints that govern signaling ability. With the importance of the interreceptor cross-phosphorylation reaction, a likely constraint was the relative geometry of receptors within the dimer. We have tested this possibility by constructing a consecutive series of cysteine substitutions in the Neu juxtamembrane domain in order to force dimerization along a series of interreceptor faces. Within the group that dimerized constitutively, a subset had transforming activity. The substitutions in this subset all mapped to the same face of a predicted alpha helix, the most likely conformation for the intramembrane domain. Furthermore, this face of interaction aligns with the projected Neu* V664E substitution and with a predicted amphipathic interface in the Neu juxtamembrane domain. We propose that these results identify an RTK dimer interface and that dimerization of this RTK induces an extended contact between juxtamembrane and intramembrane alpha helices.  相似文献   

7.
Nerve growth factor (NGF) is the prototype of a family of neurotrophins that support important neuronal programs such as differentiation and survival of a subset of sympathetic, sensory, and brain neurons. NGF binds to two classes of cell surface receptors: p75LANR and p140TrkA. NGF binding to p140TrkA initiates the neuronal signaling pathway through activation of the tyrosine kinase activity, which subsequently results in a rapid signal transduction through a phosphorylation cascade. To examine this crucial signaling step in more detail, the TrkA extracellular domain polypeptide (TrkA-RED) was overexpressed in Sf21 insect cells and purified to homogeneity. The recombinant TrkA-RED is a 70 kDa acidic glycoprotein with a pI of 5.1, and mimics the intact TrkA receptor for NGF binding with a dissociation constant, Kd, of 2.9 nM. Thus, the recombinant TrkA-RED is functionally competent and can be used to elucidate the interaction of NGF and TrkA receptor. Circular dichroism difference spectra indicated that, upon association of NGF with TrkA-RED, a minor conformational change occurred to form a complex with decreased ordered secondary structure. Interaction between NGF and TrkA-RED was also demonstrated by size exclusion chromatography, light scattering, and chemical crosslinking with evidence for formation of a higher molecular weight complex consistent with a (TrkA-RED)2-(NGF dimer) complex. Association and dissociation rates of 5.6 x 10(5) M(-1) s(-1) and 1.6 x 10(-3) s(-1), respectively, were determined by biosensor technology. Thus, initiation of signaling may stem from NGF-induced receptor dimerization concomitant with a small conformational change.  相似文献   

8.
Sequence analyses show that Sp?tzle, the Drosophila melanogaster Toll-receptor ligand, shows striking similarity to nerve growth factor and coagulogen. Comparative modelling suggests that Sp?tzle adopts a cystine-knot fold and forms a dimer that contains a single, intermolecular disulphide bridge. Proteolytically cleaved Sp?tzle could therefore dimerize and activate the Toll receptor by inducing receptor dimerization.  相似文献   

9.
Neurotrophin-3 (NT-3) is a cystine knot growth factor that promotes the survival, proliferation, and differentiation of developing neurons and is a potential therapeutic for neurodegenerative diseases. To clarify the structural basis of receptor specificity and the role of neurotrophin dimerization in receptor activation, the structure of the NT-3 homodimer was determined using X-ray crystallography. The orthorhombic crystals diffract to 2.4 A, with dimer symmetry occurring about a crystallographic 2-fold axis. The overall structure of NT-3 resembles that of the other neurotrophins, NGF and BDNF; each protomer forms a twisted four-stranded beta sheet, with three intertwined disulfide bonds. There are notable differences, however, between NT-3 and NGF in the surface loops and in three functionally important regions, shown in previous mutagenesis studies to be critical for binding. One such difference implies that NT-3's binding affinity and specificity depend on a novel hydrogen bond between Gln 83, a residue important for binding specificity with TrkC, and Arg 103, a residue crucial for binding affinity with TrkC. NT-3's extensive dimer interface buries much of the otherwise solvent-accessible hydrophobic surface area and suggests that the dimeric state is stabilized through the formation of this hydrophobic core. A comparison of the dimer interface between the NT-3 homodimer and the BDNF/NT-3 heterodimer reveals similar patterns of hydrogen bonds and nonpolar contacts, which reinforces the notion that the evolutionarily conserved neurotrophin interface resulted from the need for receptor dimerization in signal initiation.  相似文献   

10.
The reproductive cycle of female mosquitoes is activated by ingestion of blood from vertebrate hosts. Shortly after feeding, neurohormones are released from the brain neurosecretory system and stimulate the ovaries to secrete ecdysteroids, which are necessary for vitellogenesis by the fat body. Because bombyxins, which are insulin-like peptides, stimulate ecdysteriodgenesis in silkworm larvae, we tested porcine insulin and found that it activates ecdysteroidogenesis and protein synthesis in ovaries isolated from unfed mosquitoes. To further characterize the regulation of ecdysteroidogenesis in female mosquitoes, we cloned the mosquito insulin receptor (MIR) homologue from ovarian mRNA. The sequence of the extracellular domain shows moderate homologies with vertebrate and Drosophila insulin receptor homologues, as well as with the insulin receptor-related receptor, the latter being an "orphan" receptor with an unknown function. In the intracellular domain, high homologies are observed, particularly in those subdomains that are responsible for ATP binding and kinase activity. Northern blot analysis of MIR demonstrated a highly specific expression in ovaries, and cloning experiments indicated its presence in the brain. Recombinant MIR extracts from a baculovirus expression system contained high constitutive kinase activity in the presence of manganese or magnesium. Activation was independent of a ligand. SDS-gel analysis suggested that the recombinant receptor was not post-translationally processed into an alpha- and beta-subunit as was expected from a putative cleavage signal. Enzymatic properties of the proreceptor are presented: the Km for ATP was between 15 and 50 microM in the presence of a synthetic substrate: maximal kinase activity to 100-fold over basic activity was reached in the presence of 1 mM manganese. Stimulation of key oogenic processes by porcine insulin and identification of a MIR indicate that insulin-like neurohormones may have an important regulatory role in mosquito oogenesis.  相似文献   

11.
We have measured the effect of tension on dimerization kinetics of the channel-forming peptide gramicidin A. By aspirating large unilamellar vesicles into a micropipette electrode, we are able to simultaneously monitor membrane tension and electrical activity. We find that the dimer formation rate increases by a factor of 5 as tension ranges from 0 to 4 dyn/cm. The dimer lifetime also increases with tension. This behavior is well described by a phenomenological model of membrane elasticity in which tension modulates the mismatch in thickness between the gramicidin dimer and membrane.  相似文献   

12.
Activation of the insulin receptor, like other tyrosine kinase receptors, appears to require dimerization. We have shown previously that, even in the absence of insulin, full receptor activation can be induced by changes in the receptor transmembrane domain (TMD), suggesting that TMD dimerization is sufficient for receptor activation. To further understand the importance of the TMD in insulin receptor activation, we have inverted the entire TMD sequence including flanking basic amino acids, residue-for-residue. This mutation was predicted to alter the ability of a TMD alpha-helix to form homodimers and higher level aggregates. Despite apparently normal protein folding on either side of the membrane, this mutation caused ER retention and, for those receptors that reached the cell surface, blockade of insulin-stimulated kinase signal transmission. However, the signaling blockade could be overcome by proteolytic activation with trypsin. In contrast, shifting only the basic cytoplasmic residues to the opposite side of the TMD or mutation to neutral residues had no detectable effect on assembly, biosynthesis, topology, or signaling. These findings extend our previous observations to suggest that TMD interactions within the membrane are not only sufficient for receptor activation, but may be required. TMD interactions also appear to be necessary for oligomeric assembly and biosynthetic maturation of the insulin receptor.  相似文献   

13.
Sequence-specific DNA binding proteins generally consist of more than two DNA-contacting regions to ensure the selectivity of recognition. The multiple DNA binding modules are connected either through the covalent linker or through the noncovalent dimerization domain. We have compared the DNA binding of peptide dimers with covalent and noncovalent dimerization domains to explore the potential advantage of each linkage on the sequence-specific DNA binding. Three sets of head-to-tail peptide dimers were synthesized by using the same basic region peptide to target the same DNA sequence; one dimer was assembled with a bridged biphenyl derivative as a covalent dimerization domain, and two other dimers were assembled with the cyclodextrin guest noncovalent dimerization domains. One of the noncovalent dimers was a heterodimer that consisted of cyclodextrin and guest peptides, while the other was a homodimer that consisted of peptides bearing both cyclodextrin and the guest molecule within the same chain. Both noncovalent dimers formed the specific DNA complexes within narrower ranges of peptide concentrations and showed higher sequence selectivity than the covalent dimer did. Among the three dimers, the noncovalent homodimer that can form an intramolecular inclusion complex showed the highest sequence selectivity. Because the noncovalent homodimer with the higher stability of the circular intramolecular inclusion complex exhibited the higher sequence selectivity, it was concluded that an equilibrium involving a conformational transition of a monomeric peptide effectively reduced the stability of its nonspecific binding complex, hence increasing the efficacy of cooperative dimer formation at the specific DNA sequence.  相似文献   

14.
Hypertension     
We have investigated the mechanism and the evolutionary pathway of protein dimerization through analysis of experimental structures of dimers. We propose that the evolution of dimers may have multiple pathways, including (1) formation of a functional dimer directly without going through an ancestor monomer, (2) formation of a stable monomer as an intermediate followed by mutations of its surface residues, and (3), a domain swapping mechanism, replacing one segment in a monomer by an equivalent segment from an identical chain in the dimer. Some of the dimers which are governed by a domain swapping mechanism may have evolved at an earlier stage of evolution via the second mechanism. Here, we follow the theory that the kinetic pathway reflects the evolutionary pathway. We analyze the structure-kinetics-evolution relationship for a collection of symmetric homodimers classified into three groups: (1) 14 dimers, which were referred to as domain swapping dimers in the literature; (2) nine 2-state dimers, which have no measurable intermediates in equilibrium denaturation; and (3), eight 3-state dimers, which have stable intermediates in equilibrium denaturation. The analysis consists of the following stages: (i) The dimer is divided into two structural units, which have twofold symmetry. Each unit contains a contiguous segment from one polypeptide chain of the dimer, and its complementary contiguous segment from the other chain. (ii) The division is repeated progressively, with different combinations of the two segments in each unit. (iii) The coefficient of compactness is calculated for the units in all divisions. The coefficients obtained for different cuttings of a dimer form a compactness profile. The profile probes the structural organization of the two chains in a dimer and the stability of the monomeric state. We describe the features of the compactness profiles in each of the three dimer groups. The profiles identify the swapping segments in domain swapping dimers, and can usually predict whether a dimer has domain swapping. The kinetics of dimerization indicates that some dimers which have been assigned in the literature as domain swapping cases, dimerize through the 2-state kinetics, rather than through swapping segments of performed monomers. The compactness profiles indicate a wide spectrum in the kinetics of dimerization: dimers having no intermediate stable monomers; dimers having an intermediate with a stable monomer structure; and dimers having an intermediate with a stable structure in part of the monomer. These correspond to the multiple evolutionary pathways for dimer formation. The evolutionary mechanisms proposed here for dimers are applicable to other oligomers as well.  相似文献   

15.
Computer simulations were performed on models of the beta2-adrenergic receptor dimer, including 5,6-domain swapped dimers which have been proposed as the active, high affinity form (here the dimer interface lies between helices 5 and 6). The calculations suggest that the domain swapped dimer is a high energy structure in both the apo dimer and in the presence of propranolol. In the presence of agonist the energy of the domain swapped dimer is significantly lowered. Analysis of the dimer structure suggests that the agonist-induced conformational change optimizes the helix-helix interactions at the 5-6 interface. An antagonist on the other hand has little effect on these interactions. These observations are consistent with the hypothesis that the agonist functions by shifting the equilibrium in favour of the domain swapped dimer. Indirect support for the domain swapping hypothesis was obtained from the correlated mutations amongst the external residues of the known beta2-adrenergic receptors. These occur mainly at the 5-6 interface at precisely the locations predicted by the simulations; site-directed mutagenesis data in support of a functional role for these lipid-facing correlated residues is presented. The article includes a review of the experimental evidence for G-protein coupled receptor dimerization. Many other aspects of G-protein coupled receptor activation are discussed in terms of this domain swapping hypothesis  相似文献   

16.
The degradation products of recombinant human interleukin-1 receptor antagonist (rhIL-1ra) formed during storage at 30 degrees C in aqueous solution were characterized. Cationic exchange chromatography of the stored sample showed two major, new peaks eluting before (P1) and after (L2) the native protein, which were interconvertible. Size-exclusion chromatography and electrophoresis documented that both the P1 and L2 fractions were irreversible dimers, formed by noncovalent interactions. A competition assay with interleukin-1 indicated that on a per monomer basis the P1 and L2 dimers retained about two-thirds of the activity of the native monomer. Infrared and far-UV circular dichroism spectroscopies showed that only minor alterations in secondary structure arose upon the formation of the P1 dimer. However, alteration in the near-UV circular dichroism spectrum suggested the presence of disulfide bonds in the P1 dimer, which are absent in the native protein. Mass spectroscopy and tryptic mapping, before and after carboxymethylation, demonstrated that the P1 dimer contained an intramolecular disulfide bond between Cys-66 and Cys-69. Although conversion of native protein to the P1 dimer was irreversible in buffer alone, the native monomer could be regained by denaturing the P1 dimer with guanidine hydrochloride and renaturing it by dialysis, suggesting that the intramolecular disulfide bond does not interfere with refolding. Analysis of the time course of P1 formation during storage at 30 degrees C indicated that the process followed first-order, and not second-order, kinetics, suggesting that the rate-limiting step was not dimerization. It is proposed that a conformational change in the monomer is the rate-limiting step in the formation of the P1 dimer degradation product. Sucrose stabilized the native monomer against this process. This result can be explained by the general stabilization mechanism for this additive, which is due to its preferential exclusion from the protein surface.  相似文献   

17.
HIV-1 RNA dimerization involves at least two key regions, one located upstream from the splice donor (SD) site, and the other located downstream from the SD site. To determine the precise location and the mechanism of action of the downstream region, we constructed a model system using a synthetic HIV-1 RNA fragment (HXB2, 455-1146), which dimerized at relatively low salt concentrations (100 mM KCl, 1 mM MgCl2). We tested in this system antisense DNAs that are complementary to both the upstream and downstream regions of HIV-1 RNA for their possible inhibitory effects on dimerization. Antisense DNAs complementary to nucleotides 773-789 located downstream from the SD site effectively inhibited dimerization of HIV-1 RNA. These inhibitory antisense DNAs hybridized with the dimer form of HIV-1 RNA, and dissociated the dimer into monomers. However, antisense DNAs complementary to the region upstream from the SD site did not hybridize with the dimer, although they inhibited RNA dimerization and also dissociated the preformed dimer.  相似文献   

18.
Short RNA species that encompass the psi domain of the retroviral genome spontaneously form dimers in vitro, and the retroviral nucleocapsid protein activates this dimerization in vitro. Addition of gag RNA sequences downstream of the 3' end of the psi domain decreases the level of spontaneous dimerization. Here, we report the effects of RNA length on dimerization in vitro, studied with RNA fragments from Moloney murine leukaemia virus that contain the psi domain and all or part of the gag sequence. Extension of the RNA leads to progressive inhibition of the in vitro dimerization process. Sequences located downstream of the 3' end of the psi domain seem to stabilize the monomeric structures. This stabilization participates in dimerization of the RNA sequences involved in the recognition of two RNA molecules. We studied the ability of nucleocapsid protein 10 to promote dimerization of such long RNA fragments, and found that the protein greatly enhances their dimerization in vitro. We propose that nucleocapsid protein 10 stimulates the overall dimerization process by reduction of the energy barrier that must be overcome to allow dimer formation. Our results show that dimerization of RNA form Moloney murine leukaemia virus in vitro is enhanced by nucleocapsid protein 10. This finding is in agreement with the involvement of the nucleocapsid protein in RNA dimerization in vivo.  相似文献   

19.
20.
The vascular endothelial growth factor (VEGF) family has recently expanded by the identification and cloning of three additional members, namely VEGF-B, VEGF-C, and VEGF-D. In this study we demonstrate that VEGF-B binds selectively to VEGF receptor-1/Flt-1. This binding can be blocked by excess VEGF, indicating that the interaction sites on the receptor are at least partially overlapping. Mutating the putative VEGF receptor-1/Flt-1 binding determinants Asp63, Asp64, and Glu67 to alanine residues in VEGF-B reduced the affinity to VEGF receptor-1 but did not abolish binding. Mutational analysis of conserved cysteines contributing to VEGF-B dimer formation suggest a structural conservation with VEGF and platelet-derived growth factor. Proteolytic processing of the 60-kDa VEGF-B186 dimer results in a 34-kDa dimer containing the receptor-binding epitopes. The binding of VEGF-B to its receptor on endothelial cells leads to increased expression and activity of urokinase type plasminogen activator and plasminogen activator inhibitor 1, suggesting a role for VEGF-B in the regulation of extracellular matrix degradation, cell adhesion, and migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号