首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hexamethylmelamine analogue trimelamol (tris-hydroxymethyl[trimethyl]melamine) and its equicytotoxic stable analogues CB 7547, CB 7639 and CB 7669 have been used to clarify the mechanism of action for the N-(hydroxymethyl)melamines as antitumour agents. Two main mechanisms have been proposed and explored: (i) formation of a reactive iminium species forming covalent adducts with DNA; and (ii) local formaldehyde release leading to cytotoxic damage. 32P-postlabelling and thermal denaturation experiments showed these compounds to be interactive with cytosine and guanine. Trimelamol gave rise to DNA-interstrand crosslinks in naked plasmid DNA and in cultured cell lines, whereas the analogues failed to do so under a variety of experimental conditions. Along with our observations that cell lines with acquired resistance to the N-(hydroxymethyl)melamines showed no significant cross-resistance to classical bifunctional alkylating agents, DNA crosslinking may play only a minor role in their mechanism of action. In cultured cell lines treatment with formaldehyde, trimelamol and CB 7639 gave rise to high levels of DNA-protein crosslinks with a gradual disappearance over a 24 hr period. Along with our earlier observation that resistance to trimelamol coincides with cross-resistance to formaldehyde, we conclude that formaldehyde-release may be an important factor in their cytotoxicity. Further, the cytotoxicity of trimelamol or formaldehyde towards human ovarian cancer cells was not influenced by glutathione depletion. As the precise mechanism of action for the N-(hydroxymethyl)melamines is apparently not shared by many commonly used anticancer agents, this may confer their broad-spectrum activity versus heavily pretreated tumours.  相似文献   

2.
N-1 and N-2 substituted pyrazolo[4,5-g]pyrido[1,2-a]benzimidazoles were prepared regioselectively, and cytotoxicities evaluated in vitro against K562 and HL60 cells. All compounds displayed weaker activity than doxorubicin against sensitive lines, but showed the same activity against resistant cell lines (multidrug resistance+, (MDR+); K562R and HL60R) indicating no resistance phenomena.  相似文献   

3.
The synthesis of the diastereomeric [1,2-bis(4-fluorophenyl)ethylenediamine][cyclobutane-1, 1-dicarboxylato]platinum(II) complexes, rac- and meso-4F-Pt(CBDC), the evaluation of their structures, their tumor-inhibiting properties and their stability in physiological environment are described (reference complexes: the dichloro- and sulfatoplatinum(II) analogues, carboplatin and cisplatin). The most interesting diastereomer, rac-4F-Pt(CBDC), equals cisplatin and surpasses carboplatin in its effect on human breast cancer cell lines (MCF-7 and MDA-MB-231). Rac-4F-Pt(CBDC) is largely insensitive against attack of nucleophiles e.g. Cl-, a prerequisite for sufficient stability in vivo and for fewer side effects. In accordance with this, in vitro studies on the binding of rac-4F-Pt(CBDC) to albumin, the main plasma protein, show that the free, non-protein-bound fraction is relatively high, coming close to that of carboplatin. These properties are of importance for the transferability of the promising effects found in the cell culture experiments to in vivo conditions. The distinctly better anti-breast cancer activity of rac-4F-Pt(CBDC) than of carboplatin has been attributed to its ability to accumulate in the tumor cells. The human ovarian cancer cell line NIH-OVCAR-3 is also strongly inhibited by rac-4F-Pt(CBDC).  相似文献   

4.
We show here that elevated levels of gonadotropins (luteinizing hormone and follicle stimulating hormone), as found in menopause or after ovariectomy, promote growth of human ovarian carcinoma by induction of tumor angiogenesis. Human epithelial ovarian cancer tumors progressed faster in ovariectomized mice. This induced growth could be attributed to the elevated levels of gonadotropins associated with loss of ovarian function because direct administration of gonadotropins also was effective in promoting tumor progression in vivo. On the other hand, gonadotropins had no direct effect on the proliferation of human ovarian cancer cells in vitro. Using MRI, we demonstrated that ovariectomy significantly (P < 0.02) induces neovascularization of human ovarian carcinoma spheroids implanted in nude mice. Moreover, conditioned medium of gonadotropin-treated human ovarian carcinoma cells showed increased mitogenic activity to bovine endothelial cells, and this activity could be blocked by neutralizing antibodies against luteinizing hormone and against vascular endothelial growth factor. Accordingly, gonadotropin stimulation resulted in a dose-dependent-induced expression of vascular endothelial growth factor in monolayer culture as well as in the outer proliferating cells of human ovarian cancer spheroids. These results demonstrate the significance of the elevated levels of gonadotropins, as found in menopause and in all ovarian cancer patients, on the progression of ovarian cancer and could explain the protective effect of estrogen replacement therapy. Based on these results, we suggest that hormonal therapy aimed at lowering the circulating levels of gonadotropins may possibly prolong remission in ovarian cancer by extending tumor dormancy.  相似文献   

5.
One of the key limiting factors in the treatment of advanced stage human epithelial malignancies is the lack of new, selective molecular targets for antineoplastic therapy. A substantial subset of human breast, ovarian, endometrial, colorectal, and prostatic cancers express elevated levels of fatty acid synthase, the major enzyme required for endogenous fatty acid biosynthesis, and carcinoma lines are growth inhibited by cerulenin, a noncompetitive inhibitor of fatty acid synthase. We have shown previously that the difference in fatty acid biosynthesis between cancer and normal cells is an exploitable target for metabolic inhibitors in the in vitro setting and in vivo in a human ovarian carcinoma xenograft in nude mice. Here, we report that cerulenin treatment of human breast cancer cells inhibits fatty acid synthesis within 6 h after exposure, that loss of clonogenic capacity occurs within the same interval, and that DNA fragmentation and morphological changes characteristic of apoptosis ensue.  相似文献   

6.
A novel sterically hindered platinum complex, AMD473 [cis-amminedichloro(2-methylpyridine) platinum(II)], designed primarily to be less susceptible to inactivation by thiols, has shown in vitro activity against several ovarian carcinoma cell lines. Notably, AMD473 has shown activity in vitro in human carcinoma cells that have acquired cisplatin resistance due to reduced drug transport (41M/41McisR) or enhanced DNA repair/increased tolerance of platinum-DNA adducts (CH1/CH1cisR). In this study, we show that AMD473, at its maximum tolerated dose of 35-40 mg/kg i.p. administration, produced marked in vivo antitumor activity against a variety of murine (ADJ/PC6 plasmacytoma, L1210 leukemia) and human ovarian carcinoma xenograft models, including several possessing acquired resistance to cisplatin [ADJ/PC6cisR, L1210cisR, CH1cisR, and HX110 (carboplatin-resistant)]. In the ADJ/PC6 model, an increased therapeutic index was noted following oral as opposed to i. p. administration. In a head-to-head comparison using CH1cisR xenografts and equitoxic doses (q7dx4 schedule), comparative growth delays were as follows: AMD473, 34 days; cisplatin, 10.4 days; carboplatin, 6.4 days; and JM216 (p.o. administration), 3.5 days (in a previous experiment, the trans-platinum complex JM335 induced a growth delay of 5.4 days against this model). In this model, oral activity was also noted with a growth delay of 34 days at 400 mg/kg every 7 days (total of four doses). In addition, AMD473 showed promising activity against CH1 xenografts that had regrown following initial treatment with cisplatin (additional growth delay of 30 days over that observed for retreatment with cisplatin). Across the whole panel of cisplatin-sensitive to cisplatin-resistant human ovarian carcinoma xenografts, AMD473 showed improved or at least comparable activity to that observed for an equitoxic dose (4 mg/kg) and schedule of cisplatin. Platinum pharmacokinetics showed that following i.v. administration of 20 mg/kg AMD473 in saline to Balb/c- mice bearing murine plasmacytoma (ADJ/PC6), a biexponential decay was observed in the plasma with a rapid distribution t1/2alpha of 24 min followed by a slow elimination t1/2beta of 44 h. Platinum accumulated in various organs with platinum tissue to plasma area under the curve ratios of 8.6 for liver and kidney, 5.7 for spleen, 3.7 for heart, 5.2 for lung, and 5 for tumor. The plasma and tissue concentration time curve following i.p. administration was similar to that observed following i.v. administration, with a bioavailability of 89%. When AMD473 was given p.o., the platinum absorption was rapid (K01 of 30 min) and the bioavailability was 40%. A less than proportional increase in area under the curve and Cmax was noted in tissue, plasma, and plasma ultrafiltrate following increasing oral doses of AMD473. In vitro, with AMD473, the rate of binding to different plasma proteins was approximately half of that of cisplatin. Following administration of 45 mg/kg i.p. in oil, 33% of the administered platinum was eliminated in the urine after 24 h, and 40% was eliminated after 72 h. Fecal recovery represented 13% of the administered dose after 3 days. Similar results were observed following oral and i.v. administration of 20 mg/kg, but significantly more was excreted in the feces (over 50% of the administered dose) following oral administration of 400 mg/kg, showing that absorption might be a limiting factor by this route of administration. The dose-limiting toxicity for AMD473 in mice was myelosuppression, and no renal toxicity was observed. The promising antitumor activity of AMD473, together with its lack of nephrotoxicity and favorable pharmacokinetic profile, suggests that AMD473 is a good candidate for clinical development. AMD473 is entering Phase I clinical trials under the auspices of the United Kingdom Cancer Research Campaign in 1997.  相似文献   

7.
We have previously found that adamantylmaleimide derivatives inhibited the growth of several cancer cell lines in vitro. In this study we examined the effect of adamantylmaleimide derivatives on the in vivo and in vitro growth of human gastric cancer cells. Experimental results showed that N-1-adamantylmaleimide (AMI) and N-1-(3,5-dimethyladamantyl)maleimide (DMAMI) exert modest growth inhibitory activities in vitro against five different cancer cell lines. In contrast, N-1-(3,5-dimethyl-adamantyl)maleamic acid (DMAMA), N-1-adamantylmaleamic acid (AMA) and N-1-adamantylsuccinimide (ASI) were virtually inactive. These results suggest that the double bond of N-substituted maleimide plays a prominent role in their antitumor activities. Further analysis with flow cytometry showed an accumulation of apoptotic SC-M1 cells after treatment with 3-10 microM AMI or 5-20 microM DMAMI for up to 72 h. DNA fragmentation by gel electrophoresis confirmed that AMI- and DMAMI- induced cytotoxicity led to cell apoptosis. In addition, scanning electron microscopy (SEM) showed that treating cells with AMI (> or = 10 microM) for 24 h, significantly changed the morphology of SC-M1 cells, i.e. they had an irregular flat shape and the cell membrane was porous. The AMI-induced morphological changes of the cell membrane may lead to apoptosis of SC-M1 cells. AMI-induced growth inhibition was observed in vivo using SCID mice bearing SC-M1 tumors. The AMI-induced growth inhibition of SC-M1 tumor was dose-dependent.  相似文献   

8.
Penclomedine [3,5-dichloro-4,6-dimethoxy-2-(trichloromethyl)pyridine], an antitumor agent, is currently in Phase I clinical trials and is believed to be a prodrug. In these studies, cerebellar effects have been dose limiting. Previous studies identified 4-demethylpenclomedine (4-DM-PEN) as the major plasma metabolite in rodents and humans. 4-DM-PEN was demonstrated to be an antitumor-active metabolite of penclomedine in vivo when evaluated against the penclomedine-sensitive MX-1 human breast tumor xenograft implanted either s.c. or intracerebrally and is believed to be on the metabolic activation pathway of penclomedine. Because earlier studies revealed an absence of neurotoxic cerebellar effects for 4-DM-PEN in contrast to penclomedine in a rat model, this metabolite may be a candidate for an alternative to penclomedine in the clinic for treatment of breast cancer or brain tumors, if the cerebellar effects of penclomedine preclude its further clinical development. Because neither penclomedine nor 4-DM-PEN were very active in vitro, the metabolism of penclomedine was also investigated using rat liver microsomes in an attempt to identify the ultimate active form of the drug. Metabolites and putative metabolites were prepared by chemical synthesis for antitumor evaluation in vitro and in vivo. A reductive metabolite, alpha,alpha-didechloro-PEN, was observed to be much more cytotoxic than penclomedine or 4-DM-PEN in vitro, but evaluation of this and the other metabolites and putative metabolites in vivo against the MX-1 tumor failed to identify any active metabolite among the structures evaluated other than 4-DM-PEN. The limited activity of 4-DM-PEN in vitro indicates that it, like penclomedine, is also a prodrug, demonstrating a need for additional studies on the metabolic activation of penclomedine to identify the ultimate active form of the drug.  相似文献   

9.
Drug resistance is one of the problems severely limiting chemotherapy in cancer patients. Thus, it is very important to develop new drugs that are effective against drug-resistant tumour cells. The novel anti-tumour agent NK109 has been developed from benzo[c]phenanthridine derivatives by Nippon Kayaku (Tokyo, Japan). We have confirmed that NK109 shows anti-tumour effects against a number of human tumour cell lines by inhibiting DNA topoisomerase II activity through the stabilization of the cleavable complex. Further, its efficacy against several drug-resistant tumour cell lines was also shown. NK109 showed potent anti-tumour activity against doxorubicin-resistant human tumour cell lines that have a typical multidrug resistance phenotype caused by P-glycoprotein. NK109 was not pumped extracellularly by P-glycoprotein and, consequently, NK109 accumulated in resistant cells. Cisplatin-resistant human tumour cell lines, which demonstrated decreased cisplatin accumulation, were sensitive to NK109. NK109 non-cross-resistance was confirmed using xenografts of tumour cells that were resistant to cisplatin in SCID mice. Furthermore, etoposide-resistant cells, with decreased topoisomerase II activity, were markedly sensitive to NK109 when compared with their parent cells, suggesting the possibility that the cytotoxic mechanism of NK109 differs from that of etoposide. In conclusion, NK109 is a very promising new anti-tumour drug for clinical use, because the efficacy of NK109 is not susceptible to several known molecular alterations that are associated with drug resistance. A clinical study of this compound is now in progress in Japan.  相似文献   

10.
The objectives of this study were to evaluate the protective effects of amifostine against paclitaxel-induced toxicity to normal and malignant human tissues. Haematopoietic progenitor colony assays were used to establish the number of CFU-GEMM and BFU-E colonies after incubation with WR-1065 alone, Amifostine alone, paclitaxel (2.5 or 5 microM) +/- WR-1065 or amifostine. MTT and alkaline elution assays evaluated the in vitro growth inhibitory and DNA damaging effects, respectively, of paclitaxel with or without amifostine against normal human fibroblasts and human non-small cell lung cancer (NSCLC) cells. This combination was also evaluated in vivo using severe combined immune deficient (scid) mouse models of early (non-palpable tumours) and advanced (palpable tumours) human ovarian cancer. Human 2780 ovarian cancer cells were inoculated subcutaneously while paclitaxel and amifostine were administered intraperitoneally. A brief exposure (15 min) to amifostine not only protected human haematopoietic progenitor colonies from paclitaxel toxicity, but stimulated the growth of CFU-GEMM and BFU-E beyond control values. Amifostine protected normal human lung fibroblasts from paclitaxel-induced cytotoxicity and DNA single-strand breaks. However, paclitaxel cytotoxicity and DNA single-strand breaks were actually enhanced by pretreatment with amifostine in the NSCLC model. Importantly, amifostine did not interfere with paclitaxel antitumour activity even with prolonged exposure (24.5 h) of the lung cancer cells to high concentrations (1.2 mM) in vitro or following five repetitive high doses (200 mg/kg) given to scid mice with human ovarian cancer xenografts. Indeed, under certain circumstances, amifostine resulted in sensitisation of tumour cells to paclitaxel. Our results confirm previous reports of the ability of amifostine to protect normal tissues from the toxic effects of chemotherapy drugs and now extend these observations to paclitaxel.  相似文献   

11.
Based on both binding and functional data, this study introduces SR 144528 as the first, highly potent, selective and orally active antagonist for the CB2 receptor. This compound which displays subnanomolar affinity (Ki = 0.6 nM) for both the rat spleen and cloned human CB2 receptors has a 700-fold lower affinity (Ki = 400 nM) for both the rat brain and cloned human CB1 receptors. Furthermore it shows no affinity for any of the more than 70 receptors, ion channels or enzymes investigated (IC50 > 10 microM). In vitro, SR 144528 antagonizes the inhibitory effects of the cannabinoid receptor agonist CP 55,940 on forskolin-stimulated adenylyl cyclase activity in cell lines permanently expressing the h CB2 receptor (EC50 = 10 nM) but not in cells expressing the h CB1 (no effect at 10 microM). Furthermore, SR 144528 is able to selectively block the mitogen-activated protein kinase activity induced by CP 55,940 in cell lines expressing h CB2 (IC50 = 39 nM) whereas in cells expressing h CB1 an IC50 value of more than 1 microM is found. In addition, SR 144528 is shown to antagonize the stimulating effects of CP 55,940 on human tonsillar B-cell activation evoked by cross-linking of surface Igs (IC50 = 20 nM). In vivo, after oral administration SR 144528 totally displaced the ex vivo [3H]-CP 55,940 binding to mouse spleen membranes (ED50 = 0.35 mg/kg) with a long duration of action. In contrast, after the oral route it does not interact with the cannabinoid receptor expressed in the mouse brain (CB1). It is expected that SR 144528 will provide a powerful tool to investigate the in vivo functions of the cannabinoid system in the immune response.  相似文献   

12.
Differential display PCR [DD-PCR] was applied to identify mRNAs differentially expressed between two consecutive stages of an in vivo model of mouse mammary carcinogenesis. The extended life 12 [EL12] and transformed mammary 12 [TM12] outgrowths differ in morphology, ovarian hormone dependence, and tumorigenicity, yet the TM12 outgrowth arose spontaneously from the EL12 outgrowth. A fragment of the mouse p96 gene was identified using DD-PCR. The differential expression of p96 was confirmed using RNase protection assays. Examination of the RNA expression patterns of the p96 isoforms during normal mammary gland development showed high levels in the involuting mammary gland and in preneoplastic hyperplasias. In contrast, p96 isoform mRNA levels were consistently decreased in mammary tumors derived from the in vivo hyperplasias. Examination of p96 protein levels revealed a decrease in p96 protein in a number of mammary tumors as compared to their hyperplastic precursors further supporting the observations that p96 gene expression is consistently downregulated in mammary tumors. The functional activity of p96 protein has not been resolved, however the observation that p96 gene expression is downregulated in two different tumor systems (human ovarian tumors and mouse mammary tumors) warrants more extensive investigation on its role in normal and neoplastic cell growth.  相似文献   

13.
We investigated the in vitro activity and the in vivo efficacy of the beta-lactam-beta-lactamase inhibitor combination cefoperazone-sulbactam against an isogenic series of Klebsiella pneumoniae strains. Both cefoperazone and cefoperazone-sulbactam were active in vitro against a susceptible clinical strain, and the combination was highly effective in the treatment of rat intra-abdominal abscesses. Loss of expression of a 39-kDa outer membrane protein resulted in at least a fourfold increase in the MICs of cefoperazone and cefoperazone-sulbactam but did not appreciably affect the in vivo efficacy of either regimen. Introduction of plasmid RP4, which encodes the TEM-2 beta-lactamase, into the susceptible strain resulted in the loss of in vitro activity and in vivo efficacy for cefoperazone. The in vitro activity of cefoperazone-sulbactam against this strain was diminished, but the antibiotic combination remained highly active in vivo. Introduction of RP4 into the strain lacking the 39-kDa outer membrane protein resulted in a fourfold increase in the in vitro MIC of cefoperazone-sulbactam in comparison with the beta-lactamase-producing susceptible strain and resulted in a loss of in vivo efficacy against infections caused by this strain. These results suggest that the combination of different resistance mechanisms, neither of which alone results in substantially diminished cefoperazone-sulbactam efficacy in vivo, can cause in vivo resistance to the beta-lactam-beta-lactamase inhibitor combination in K. pneumoniae.  相似文献   

14.
As part of a drug discovery program to discover more effective platinum-based anticancer drugs, a series of platinum complexes of trans coordination geometry centered on trans-ammine(cyclohexylaminedichlorodihydroxo)platinum(IV) (JM335) has been evaluated in vitro against a panel of cisplatin-sensitive and cisplatin-resistant human tumor cell lines (predominantly ovarian). In vitro, against 5 human ovarian carcinoma cell lines, JM335 was comparably cytotoxic to cisplatin itself and over 50-fold more potent than transplatin (mean 50% inhibitory concentrations: JM335, 3.1 microM; cisplatin, 4.1 microM; transplatin, 162 microM). With the use of seven pairs of human tumor cell lines (parent and subline with acquired resistance to cisplatin and encompassing all of the known major mechanisms of resistance to cisplatin) JM335 exhibited a different cross-resistance pattern to that of its cis isomer (JM149). JM335 showed non-cross-resistance in six of the seven resistant lines, cross-resistance in the A2780cisR line possibly being associated with high levels of glutathione. Preliminary intracellular DNA binding studies showed that in contrast to transplatin, JM335 was efficient at forming DNA-DNA interstrand cross-links. In vivo, JM335 produced growth delays in excess of 15 days against 4 of 6 human ovarian carcinoma xenografts and was unique among the complexes studied in retaining some efficacy against a cisplatin-resistant subline of the murine ADJ/PC6 plasmacytoma. JM335 is the first trans-platinum complex to demonstrate marked antitumor efficacy against both murine and human s.c. tumor models and represents a significant structural lead to complexes capable of circumventing cross-resistance to cisplatin.  相似文献   

15.
Epithelial ovarian cancer is a major cause of cancer-related mortality in women, making the search for new treatment modalities essential. Sodium phenylacetate (NaPa), a phenylalanine derivative, has been shown to induce cytostasis and differentiation by inhibiting protein isoprenylation. Similar effects have been observed with phenylbutyrate, a phenylacetate congener. We examined in parallel the growth inhibitory activity against human ovarian carcinoma cell lines of phenylacetate, phenylbutyric acid (PB), and certain related compounds, and comparisons were made with lovastatin. On a molar basis, hydroxykynurenine and kynurenine showed the highest activity followed by PB and NaPa. Ovarian carcinoma cell lines were also sensitive to lovastatin in micromolar concentrations. Additive effects were observed when PB was combined with cisplatin or when NaPa or PB were combined with lovastatin. NaPa and PB, but not kynurenine, inhibited incorporation of [3H]mevalonate into ovarian carcinoma cells. An immune modulatory role might also be suggested for PB because it resulted in increased ovarian tumor cell expression of human leukocyte antigen class I and the cluster of differentiation molecule CD58, whereas transforming growth factor-beta2 expression was decreased. Phenylbutyrate, which is the ester form of PB, has shown acceptable pharmacological properties and clinical responses in patients with other malignancies, and might be considered for evaluation in ovarian cancer.  相似文献   

16.
BACKGROUND: Multidrug resistance has been associated with expression of the multidrug resistance protein (MRP). Recently, MRP-expression has been detected in human tumor samples of patients with breast cancer and non-small-cell lung cancer. Since taxoids are the most active drugs in the treatment of both tumor entities, the antitumor efficacies of paclitaxel and docetaxel were compared in nude mice bearing human tumor xenografts that express MRP. MATERIALS AND METHODS: Athymic nude mice (nu/nu) bearing tumor xenografts of parental human sarcoma HT1080 or MRP-expressing HT1080/DR4 cells (as confirmed by Northern blot analysis) were treated with the maximum tolerated doses (MTD) of doxorubicin ([Dx] 10 mg/kg i.v. push), paclitaxel ([PC] 50 mg/kg three-hour i.v. infusion), or docetaxel ([DC] 40 mg/kg three-hour i.v. infusion). In vitro, the activity of doxorubicin, paclitaxel and docetaxel was evaluated by the sulphorhodamine B (SRB) assay using the pyridine analogue PAK-104P (5 microM), a potent inhibitor of MRP-function. RESULTS: At their MTDs both taxoids showed significant activity against MRP-negative HT1080 xenografts with response rates of 80% (40% CR) for PC and 100% (60% CR) for DC. In contrast, DC was significantly more active than PC in nude mice bearing doxorubicin resistant MRP-expressing HT1080/DR4 tumor xenografts (overall response rates: 100% (60% CR) for DC; 10% (0% CR) for PC; 0% for Dx). Since treatment of mice with the MTD of PC or DC yielded similar overall toxicity (maximum weight loss for HT1080: PC 8.6 +/- 2.2%; DC 7.5 +/- 2.2% and for HT1080/DR4: PC 11.6 +/- 3.0%; DC 7.6 +/- 1.8%, respectively), these results demonstrate the increase in the therapeutic index for docetaxel against MRP-expressing tumors. In vitro, HT1080/DR4 cells were 270-fold, 6.4-fold and 2.8-fold more resistant than parental cells to doxorubicin, PC and DC, respectively. Pyridine analogue PAK-104P completely restored drug sensitivity to PC and DC, while no effect of PAK-104P on parental HT1080 cells was observed. CONCLUSIONS: Both taxoids, when given at their MTDs, showed significant efficacy against parental HT1080 tumor xenografts. However, docetaxel at its MTD was significantly more active against MRP-expressing tumor xenografts than paclitaxel. Furthermore, in vitro resistance of HT1080/DR4 cells was higher for PC (6.4-fold) than for DC (2.8-fold). Since PAK-104P completely restored sensitivity to both taxoids, the observed resistance appears to be related to MRP. These data suggest, that docetaxel is not as readily transported by MRP as paclitaxel leading to an increased therapeutic ratio in MRP-expressing tumors in vivo. Therefore, docetaxel may have therapeutic advantages in the clinical treatment of MRP-expressing tumors.  相似文献   

17.
Thioredoxin (TRX) is a widely distributed Mr 13,000 protein with a redox-active dithiol/disulfide in the active site. The TRX system, consisting of TRX, TRX reductase, and NADPH, has an intracellular reducing capacity. Another reducing capacity, glutathione (GSH), can be associated with cis-diaminedichloroplatinum (cDDP) resistance. Therefore, we examined the involvement of TRX in cDDP resistance using two cell lines designated St/DDP and HT/DDP, which were established from the human gastric cancer cell line St-4 and the colon cancer cell line HT-29. St/DDP and HT/DDP were seven and five times as resistant to cDDP as their parental lines, and the expression of TRX in these variants was increased by 2.5- and 2-fold, respectively. The expression of TRX in the complete revertant cells of St/DDP was reduced as low as that in St-4 cells. TRX reductase activity was also increased in St/DDP and HT/DDP, suggesting that activation of the TRX system was associated with in vitro-acquired cDDP resistance. Because cDDP is the first-line drug against ovarian cancer, we examined the expression of TRX in 11 human ovarian cancer cell lines not treated with cDDP in vitro. Positive correlation between TRX expression and cDDP resistance was observed in these cell lines (r = 0.76, P = 0.007). This correlation was comparable to that between GSH content and cDDP resistance (r = 0.69, P = 0.019). These results suggest a possible involvement of TRX, as well as GSH, in cDDP resistance.  相似文献   

18.
To elucidate the role of NK1.1+ T cells in the antitumor immune response, we established cloned NK1.1+ T cell lines from tumor-infiltrating lymphocytes (TIL) of B16 melanoma, and examined their mode of action in generating antitumor effector T cells both in vitro and in vivo. An NK1.1+ T cell clone (TM4.2) was phenotypically CD3+ TCR-alphabeta+ CD4- CD8- NK1.1+, and CD28+. The TM4.2 cells suppressed the in vitro generation of anti-B16 melanoma CTLs, but not the effector function of CTLs. The results using a transwell membrane suggested that their suppressive activity was mediated by both soluble factors and a direct cell to cell interaction. As for the soluble factors, the suppressive activity of the culture supernatant of TM4.2 cells was neutralized by anti-TGF-beta mAb, and the TM4.2 cells actually produced a considerable amount of TGF-beta. On the other hand, the TM4.2 cells showed a high level of cytolytic activity against B cell blasts and CD80-transfected P815, and such cytolytic activity was reduced by the addition of anti-CD80 mAb. In addition, NK1.1+ T cells in the freshly isolated TIL were revealed to express CD28. Furthermore, the TM4.2 cells suppressed the in vitro generation of anti-allo CTLs irrespective of the MHC haplotype. Finally, the TM4.2 cells suppressed the in vivo antitumor immune response. Collectively, these findings demonstrate that NK1.1+ T cells in TIL show immunosuppressive activity in the antitumor immune response through the production of TGF-beta and the preferential cytolysis of B7-expressing cells.  相似文献   

19.
Two potent non-steroidal inhibitors (CB7645 and CB7661) of human cytochrome P450(17alpha) were tested for in vivo activity in WHT mice. There were no signs of toxicity, but there was no effect on the androgen-dependent organs. The pharmacokinetics and biochemistry of the compounds in mice were investigated. Following i.p. administration of 0.5 mmol/kg of CB7645 and CB7661, peak plasma levels of 13.4 and 3.4 microM, respectively, occurred after 2-4 h, both compounds were cleared rapidly (terminal half-lives 2.7 and 3.3 h, respectively) and neither was detectable at 24 h. CB7645 produced some decrease in plasma testosterone at 4 h, but this was not sustained. When tested in vitro against the WHT testicular enzyme, the CB7645 and CB7661 were competitive inhibitors with K(i) values of 10 and 13 nM, respectively. However, the K(m) for the substrate progesterone was lower at 4.3 nM. These data indicate that, for effective and continuous inhibition of the murine cytochrome P450(17alpha) enzyme, higher peak levels of the compounds would be required, and these levels would need to be maintained throughout the treatment period.  相似文献   

20.
In exploring the structural features which determine the antitumor activity of 2,4,6-tris-[(hydroxymethyl)methylamino]-1,3,5-triazine (trimelamol, 1), we have synthesized analogues in which the methyl groups have been replaced by the electron-withdrawing substituents 2,2,2-trifluoroethyl (5), propargyl (13), and cyanomethyl (15) via the respective tris(alkylamino)triazines 3, 12, and 14. Three mono[(hydroxymethyl)amino]triazines (4, 7, and 10) were also prepared. All the new tris(hydroxymethyl) derivatives showed cytotoxicities toward a variety of experimental rodent and human ovarian tumor cell lines similar to those shown by 1, the cyanomethyl analogue (15) having the most favorable profile. Mono(hydroxymethyl) derivatives (4 and 7) were ca. one-third as toxic. The new tris(hydroxymethyl) analogues were more stable to aqueous hydrolysis than was 1. Half-life (pH 7.5) values were, for 1, 120 min, for 5, 690 min, for 13, 450 min, and for 15, 275 min, but at pH 2.0, 15 (t1/2 350 min) was the most stable. This cyanomethyl analogue was also the most water-soluble, being comparable to 1 whereas 5 and 13 were poorly soluble.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号