首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Cast precipitation-hardened (PH) stainless steels 17-4 and 13-8+Mo are used in applications that require a combination of high strength and moderate corrosion resistance. Many such applications require fabrication and/or casting repair by fusion welding. The purpose of this work is to develop an understanding of microstructural evolution and resultant mechanical properties of these materials when subjected to weld thermal cycles. Samples of each material were subjected to heat-affected zone (HAZ) thermal cycles in the solution-treated and aged condition (S-A-W condition) and solution-treated condition with a postweld thermal cycle age (S-W-A condition). Dilatometry was used to establish the onset of various phase transformation temperatures. Light optical microscopy (LOM), scanning electron microscopy (SEM), and energy dispersive spectrometry (EDS) were used to characterize the microstructures, and comparisons were made to gas metal arc welds that were heat treated in the same conditions. Tensile testing was also performed. MatCalc thermodynamic and kinetic modeling software was used to predict the evolution of copper (Cu)-rich body center cubic precipitates in 17-4 and β-NiAl precipitates in 13-8+Mo. The yield strength was lower in the simulated HAZ samples of both materials prepared in the S-A-W condition when compared to their respective base metals. Samples prepared in the S-W-A condition had higher and more uniform yield strengths for both materials. Significant changes were observed in the matrix microstructure of various HAZ regions depending on the peak temperature, and these microstructural changes were interpreted with the aid of dilatometry results, LOM, SEM, and EDS. Despite these significant changes to the matrix microstructure, the changes in mechanical properties appear to be governed primarily by the precipitation behavior. The decrease in strength in the HAZ samples prepared in the S-A-W condition was attributed to the dissolution of precipitates, which was supported by the MatCalc modeling results. MatCalc modeling results for samples in the S-W-A condition predicted uniform size of precipitates across all regions of the HAZ, and these predictions were supported by the observed trends in mechanical properties. Cross-weld tensile tests performed on GMA welds showed the same trends in mechanical behavior as the simulated HAZ samples. Welding in the S-W-A condition resulted in over 90 pct retention in yield strength when compared to base metal strengths. These findings indicate that welding these PH stainless steels in the solution-treated condition and using a postweld age will provide better and more uniform mechanical properties in the HAZ that are more consistent with the base metal properties.

  相似文献   

2.
Shielded metal arc welding was applied to AISI 1045 medium carbon steel. The microstructural changes and electrochemical corrosion behavior of the heat-affected zone (HAZ), base metal (BM), and weld zone (WZ) were investigated. The effect of welding passes on microstructural changes of BM, HAZ, and WZ were elucidated using optical microscopy, potentiodynamic Tafel scan, and linear polarization resistance (LPR) methods in plain water and 3.5 pct (w/v) NaCl solution under standard temperature and pressure using corrosion kinetic parameters. From microstructural observations, the variations in ferrite morphology in the BM and WZ showed dissimilar electrochemical corrosion behavior and a corrosion rate than that of HAZ.  相似文献   

3.
The aluminum alloy 6013 was friction-stir welded in the T4 and the T6 temper, and the microstructure and mechanical properties were studied after welding and after applying a postweld heat treatment (PWHT) to the T4 condition. Optical microscopy (OM), transmission electron microscopy (TEM), and texture measurements revealed that the elongated pancake microstructure of the base material (BM) was transformed into a dynamically recrystallized microstructure of considerably smaller grain size in the weld nugget. Strengthening precipitates, present before welding in the T6 state, were dissolved during welding in the nugget, while an overaged state with much larger precipitate size was established in the heat-affected zone (HAZ). Microhardness measurements and tensile tests showed that the HAZ is the weakest region of the weld. The welded sheet exhibited reduced strength and ductility as compared to the BM. A PWHT restored some of the strength to the as-welded condition.  相似文献   

4.
Precipitation sequence in friction stir weld of 6063 aluminum during aging   总被引:1,自引:0,他引:1  
The precipitation sequence in friction stir weld of 6063 aluminum during postweld aging, associated with Vickers hardness profiles, has been examined by transmission electron microscopy. Friction stir welding produces a softened region in the weld, which is characterized by dissolution and growth of the precipitates. The precipitate-dissolved region contains a minimum hardness region in the aswelded condition. In the precipitate-dissolved region, postweld aging markedly increases the density of strengthening precipitates and leads to a large increase in hardness. On the other hand, aging forms few new precipitates in the precipitate-coarsened region, which shows a slight increase in hardness. The postweld aging at 443 K for 43.2 ks (12 hours) gives greater hardness in the overall weld than in the as-received base material and shifts the minimum hardness from the as-welded minimum hardness region to the precipitate-coarsened region. These hardness changes are consistent with the subsequent precipitation behavior during postweld aging. The postweld solution heat treatment (SHT) and aging achieve a high density of strengthening precipitates and bring a high hardness homogeneously in the overall weld.  相似文献   

5.
In this paper, resistance spot weldability of high‐Mn steels were investigated in order to get high reliability in welded joints of automotive components. Microstructural characterizations, cross‐tensile test (CTT), microhardness tests of spot welded parts were conducted. The effects of weld current on the microstructural characteristics, mechanical properties, and fracture modes were investigated using optical microscopy (OM) and scanning electron microscopy (SEM). The hardness in the weld nugget was observed to be lower than that in the base metal (BM). In CTT, the failure initiation was observed to occur at the boundary of the weld nugget. Also welding imperfections of welded parts were investigated. Liquation cracking in heat affected zone (HAZ), porosity, and shrinkage cavity were found most common welding defects in welded parts. Furthermore, the effects of welding imperfections on weld quality and failure criteria were identified and discussed.  相似文献   

6.
Microstructural analysis and the creep failure mechanism of dissimilar weldment between ASTM A213 T92 (9Cr1.5W0.5MoVNbTi) and T22 (2.25Cr1Mo) heat-resistant steels are reported. The low-Cr part that has high carbon activity shows a depletion of C during postweld heat treatment. In particular, the soft carbon-depleted zone (CDZ) with the lowest hardness is surrounded by strong weld metal (WM) and the T22 heat-affected zone (HAZ). Load-displacement curves obtained by nanoindentation experiments are used to extract true stress–strain curves of the WM, the CDZ, and the T22 HAZ by using finite element methods (FEMs). Because of the mechanical properties of each region, the soft CDZ confined between harder regions is exposed to multiaxial stress. Therefore, creep voids actively form and coalesce in this CDZ and lead to macroscopic brittle fracture.  相似文献   

7.
A new high strength, high toughness steel containing Cu for precipitation strengthening was recently developed for naval, blast-resistant structural applications. This steel, known as BlastAlloy160 (BA-160), is of nominal composition Fe-0.05C-3.65Cu-6.5Ni-1.84Cr-0.6Mo-0.1V (wt pct). The evident solidification substructure of an autogenous gas tungsten arc (GTA) weld suggested fcc austenite as the primary solidification phase. The heat-affected zone (HAZ) hardness ranged from a minimum of 353 HV in the coarse-grained HAZ (CGHAZ) to a maximum of 448 HV in the intercritical HAZ (ICHAZ). After postweld heat treatment (PWHT) of the spot weld, hardness increases were observed in the fusion zone (FZ), CGHAZ, and fine-grained HAZ (FGHAZ) regions. Phase transformation and metallographic analyses of simulated single-pass HAZ regions revealed lath martensite to be the only austenitic transformation product in the HAZ. Single-pass HAZ simulations revealed a similar hardness profile for low heat-input (LHI) and high heat-input (HHI) conditions, with higher hardness values being measured for the LHI samples. The measured hardness values were in good agreement with those from the GTA weld. Single-pass HAZ regions exhibited higher Charpy V-notch impact toughness than the BM at both test temperatures of 293 K and 223 K (20 °C and –50 °C). Hardness increases were observed for multipass HAZ simulations employing an initial CGHAZ simulation.  相似文献   

8.
The effects of postweld heat treatment (PWHT) on 3.2-mm- and 5.1-mm-thick Ti-6Al-4V butt joints welded using a continuous wave (CW) 4-kW Nd:YAG laser welding machine were investigated in terms of microstructural transformations, welding defects, and hardness, as well as global and local tensile properties. Two postweld heat treatments, i.e., stress-relief annealing (SRA) and solution heat treatment followed by aging (STA), were performed and the weld qualities were compared with the as-welded condition. A digital image correlation technique was used to determine the global tensile behavior for the transverse welding samples. The local tensile properties including yield strength and maximum strain were determined, for the first time, for the laser-welded Ti-6Al-4V. The mechanical properties, including hardness and the global and local tensile properties, were correlated to the microstructure and defects in the as-welded, SRA, and STA conditions.  相似文献   

9.
采用动电位极化曲线、电化学阻抗谱、Mott-Schottky曲线等电化学方法研究了以308 L为焊丝的304 L不锈钢焊接接头在不同氯离子含量的混凝土模拟孔隙液中腐蚀行为和电化学规律.随Cl-增加,304 L不锈钢焊接接头的三个区域(母材、焊缝和热影响区)在混凝土模拟孔隙液中的自腐蚀电位、点蚀电位及电荷转移电阻降低,钝化膜中载流子密度和焊接接头的点蚀坑数量增加.在同浓度的腐蚀溶液中,308 L的焊缝区域耐蚀性最佳,热影响区次之,304 L基体表现出低的电荷转移电阻和高的掺杂浓度使得母材的耐蚀性最差.   相似文献   

10.
Ultra‐fine grained ferrite steels have higher strength and better toughness than the normal ferrite steels because of their micrometer or sub‐micrometer sized grains. In this paper the ultra‐fine grained steel SS400 is welded by CO2 laser. The shape of weld, cooling rate of HAZ, width of HAZ, microstructures and mechanical properties of the joint are discussed. Experimental results indicate that laser beam welding can produce weld with a large ratio of depth to width. The cooling rate of HAZ of laser beam welding is fast, the growth of prior austenite grains of HAZ is limited, and the width of weld and HAZ is narrow. The microstructures of weld metal and coarse‐grained HAZ of laser beam welding mainly consist of BL + M (small amount). With proper laser power and welding speed, good comprehensive mechanical properties can be acquired. The toughness of weld metal and coarse‐grained HAZ are higher than that of base metal. There is no softened zone after laser beam welding. The tensile strength of a welded joint is higher than that of base metal. The welded joint has good bending ductility.  相似文献   

11.
CO2 laser beam welding of 6061-T6 aluminum alloy thin plate   总被引:1,自引:0,他引:1  
Laser beam welding is an attractive welding process for age-hardened aluminum alloys, because its low heat input minimizes the width of weld fusion and heat-affected zones (HAZs). In the present work, 1-mm-thick age-hardened Al-Mg-Si alloy, 6061-T6, plates were welded with full penetration using a 2.5-kW CO2 laser. Fractions of porosity in the fusion zones were less than 0.05 pct in bead-on-plate welding and less than 0.2 pct in butt welding with polishing the groove surface before welding. The width of a softened region in the-laser beam welds was less than 1/4 times that of a tungsten inert gas (TIG) weld. The softened region is caused by reversion of strengthening β″ (Mg2Si) precipitates due to weld heat input. The hardness values of the softened region in the laser beam welds were almost fully recovered to that of the base metal after an artificial aging treatment at 448 K for 28.8 ks without solution annealing, whereas those in the TIG weld were not recovered in a partly reverted region. Both the bead-on-plate weld and the butt weld after the postweld artificial aging treatment had almost equivalent tensile strengths to that of the base plate.  相似文献   

12.
The microstructures, tensile properties, and fatigue properties of a 2195-T8 Al-Li alloy subjected to a weld heat-affected zone (HAZ) simulation and gas-tungsten-arc (GTA) welding using a 4043 filler metal, with and without a postweld heat treatment, were studied. The principal strengthening precipitate in the T8 base alloy was the T 1 (Al2CuLi) phase. The HAZ simulation resulted in the dissolution of T 1 precipitates and the formation of T B(Al7Cu4Li) phase, Guinier-Preston (G–P) zones, and δ′ (Al3Li) particles. When the HAZ simulation was conducted at the highest temperature of 600 °C, microcracks and voids also formed along the grain boundaries (GBs). In the specimens welded with the 4043 alloy, T (AlLiSi) phase was found to form in the fusion zone (FZ). An elongated T Bphase and microcracks were observed to occur along the GBs in the HAZ close to the FZ interface. The T 1 phase was not observed in the HAZ. The postweld heat treatment resulted in the spheroidization of primary T phase and the precipitation of small secondary T particles in the FZ, the dissolution of T B phase, and the reprecipitation of the T 1 phase in the HAZ. Both the HAZ simulation and welding gave rise to a considerable decrease in the hardness, tensile properties, and fatigue strength. The hardness in the FZ was lower than that in the HAZ. Although the postweld heat treatment improved both the hardness and tensile properties due to the reprecipitation of T 1 phase in the HAZ and a smaller interparticle spacing in the FZ, no increase in the fatigue strength was observed because of the presence of microcracks in the HAZ.  相似文献   

13.
Ferritic steels are often used in thick-plate form. The feasibility of electron-beam welding such thick plates and the mechanical properties of these welds were examined in a recent study. In this investigation, the microstructures of these thick-plate, electron-beam welds were evaluated. The study was carried out on a 3Cr-1.5Mo-0.1V steel. Weld simulations were used to aid in the study of the heat-affected zone (HAZ) microstructure. Such simulations allowed for a more reliable and detailed evaluation of the variation in microstructure with distance from the fusion line. The structures were related to microhardness measurements made across the width of the weld and the HAZ. The fusion zone and the immediately adjacent HAZ consisted of bainite platelets with narrow films of retained austenite at many of the bainite platelet boundaries. Farther away from the fusion zone, the structure was a two-phase mixture of bainitic platelets and ferrite produced by heating base metal between theAc 1 and theAc 3 temperatures. Still farther from the weld, the structure consisted of tempered bainite, with the degree of tempering decreasing with distance from the fusion line. The bainite plus ferrite region and the tempered bainite section are associated with a soft zone in the hardness profile across the weld. A postweld heat treatment (PWHT) was found to reduce the hardnesses of the fusion zone, HAZ, and base material to relatively uniform levels. The structure across the weld and HAZ after a PWHT is tempered bainite except in one section of the HAZ in which tempered bainite and ferrite coexist.  相似文献   

14.
The effects of tool rotational speed (200 and 700 rpm) on evolving microstructure during friction stir welding (FSW) of a reduced activation ferritic-martensitic steel (RAFMS) in the stir zone (SZ), thermo-mechanically affected zone (TMAZ), and heat-affected zone (HAZ) have been explored in detail. The influence of post-weld direct tempering (PWDT: 1033 K (760 °C)/ 90 minutes + air cooling) and post-weld normalizing and tempering (PWNT: 1253 K (980 °C)/30 minutes + air cooling + tempering 1033 K (760 °C)/90 minutes + air cooling) treatments on microstructure and mechanical properties has also been assessed. The base metal (BM) microstructure was tempered martensite comprising Cr-rich M23C6 on prior austenite grain and lath boundaries with intra-lath precipitation of V- and Ta-rich MC precipitates. The tool rotational speed exerted profound influence on evolving microstructure in SZ, TMAZ, and HAZ in the as-welded and post-weld heat-treated states. Very high proportion of prior austenitic grains and martensite lath boundaries in SZ and TMAZ in the as-welded state showed lack of strengthening precipitates, though very high hardness was recorded in SZ irrespective of the tool speed. Very fine-needle-like Fe3C precipitates were found at both the rotational speeds in SZ. The Fe3C was dissolved and fresh precipitation of strengthening precipitates occurred on both prior austenite grain and sub-grain boundaries in SZ during PWNT and PWDT. The post-weld direct tempering caused coarsening and coalescence of strengthening precipitates, in both matrix and grain boundary regions of TMAZ and HAZ, which led to inhomogeneous distribution of hardness across the weld joint. The PWNT heat treatment has shown fresh precipitation of M23C6 on lath and grain boundaries and very fine V-rich MC precipitates in the intragranular regions, which is very much similar to that prevailed in BM prior to FSW. Both the PWDT and PWNT treatments caused considerable reduction in the hardness of SZ. In the as-welded state, the 200 rpm joints have shown room temperature impact toughness close to that of BM, whereas 700 rpm joints exhibited very poor impact toughness. The best combination of microstructure and mechanical properties could be obtained by employing low rotational speed of 200 rpm followed by PWNT cycle. The type and size of various precipitates, grain size, and evolving dislocation substructure have been presented and comprehensively discussed.  相似文献   

15.
Modified 9Cr-1Mo steel is a heat-treatable steel and hence the microstructure is temperature sensitive. During welding, the weld joint (WJ) is exposed to various temperatures resulting in a complex heterogeneous microstructure across the weld joint, such as the weld metal, heat-affected zone (HAZ) (consisting of coarse-grained HAZ, fine-grained HAZ, and intercritical HAZ), and the unaffected base metal of varying mechanical properties. The overall creep–fatigue interaction (CFI) response of the WJ is hence due to a complex interplay between various factors such as surface oxides and stress relaxation (SR) occurring in each microstructural zone. It has been demonstrated that SR occurring during application of hold in a CFI cycle is an important parameter that controls fatigue life. Creep–fatigue damage in a cavitation-resistant material such as modified 9Cr-1Mo steel base metal is accommodated in the form of microstructural degradation. However, due to the complex heterogeneous microstructure across the weld joint, SR will be different in different microstructural zones. Hence, the damage is accommodated in the form of preferential coarsening of the substructure, cavity formation around the coarsened carbides, and new surface formation such as cracks in the soft heat-affected zone.  相似文献   

16.
Three low carbon structural steels of different plate thickness have been investigated for hydrogen assisted cold cracking by the IRC weldability test at different restraint intensities. At diffusible hydrogen levels of 10–15 N ml/100 g Fe (ISO 3690), cracking decreases at increasing heat inputs due to a drop in restraint stress and hardness as well as an increase in hydrogen diffusion times. Critical heat inputs for crack prevention range from 0.95 to 1.4 kJmm?1. Higher restraints enforce higher cracking stresses as well as final stresses of uncracked test welds. Higher restraints and lower heat inputs also induce faster stress increase during cooling which, for the steels containing Ni and Cu, shift the location of cracking from the HAZ to the weld metal. The steel without Ni and lower maximum HAZ hardness reveals weld metal cracking only, regardless of welding conditions. It can be concluded that for weld metal cracking, the relation between stress increase- and hydrogen effusion rates but also the relation between weld metal and HAZ microstructure and mechanical properties are responsible.  相似文献   

17.
The application of strain-based design for pipelines requires comprehensive understanding of the postyield mechanical behavior of materials. In this article, the impact of plastic prestrain on near-neutral pH stress corrosion cracking (SCC) susceptibility of welded X70 steel was investigated with a slow strain rate tensile (SSRT) test. Generally, plastic prestrain reduces the SCC resistance in various welded zones. The SCC susceptibility of the test materials can be put in the following order: heat-affected zone (HAZ) > weld metal (WM) > base metal (BM). Fractographic analysis indicates that there are two cracking modes, mode I and mode II, during SSRT tests. Mode I cracks propagate along the direction perpendicular to the maximum tensile stress, and mode II cracks lie in planes roughly parallel to the plane where the maximum shear exists. The SCC of the BM is governed by mode I cracking and fracture of the HAZ, and the WM is dominated by mode II cracking. Damage analysis shows that the detrimental impact of plastic prestrain on the residual SCC resistance cannot be evaluated with the linear superposition model. A plastic prestrain sensitivity, a material constant independent of plastic prestrain, is proposed to characterize the susceptibility of SCC resistance to plastic prestrain, and it increases with the SCC susceptibility of the steels. The enhanced SCC susceptibility caused by plastic prestrain may be related to an increase in yield strength. The correlation of the ratio of the reduction in area in NS4 solution to that in air (RA SCC/RA air) with the yield strength is microstructure dependent.  相似文献   

18.
Aluminum alloy 7050 was friction-stir welded (FSW) in a T7451 temper to investigate the effects on the microstructure and mechanical properties. Results are discussed for the as-welded condition (as-FSW) and for a postweld heat-treated condition consisting of 121 °C for 24 hours (as-FSW + T6). Optical microscopy and transmission electron microscopy (TEM) examination of the weld-nugget region show that the FS welding process transforms the initial millimeter-sized pancake-shaped grains in the parent material to fine 1 to 5 μm dynamically recrystallized grains; also, the FS welding process redissolves the strengthening precipitates in the weld-nugget region. In the heat-affected zone (HAZ), the initial grain size is retained, while the size of the strengthening precipitates and of the precipitatefree zone (PFZ) is coarsened by a factor of 5. Tensile specimens tested transverse to the weld show that there is a 25 to 30 pct reduction in the strength level, a 60 pct reduction in the elongation in the as-FSW condition, and that the fracture path is in the HAZ. The postweld heat treatment of 121 °C for 24 hours did not result in an improvement either in the strength or the ductility of the welded material. Comparison of fatigue-crack growth rates (FCGRs) between the parent T7451 material and the as-FSW + T6 condition, at a stress ratio of R = 0.33, shows that the FCG resistance of the weldnugget region is decreased, while the FCG resistance of the HAZ is increased. Differences in FCGRs, however, are substantially reduced at a stress ratio of R = 0.70. Analysis of residual stresses, fatigue-crack closure, and fatigue fracture surfaces suggests that decrease in fatigue crack growth resistance in the weld-nugget region is due to an intergranular failure mechanism; in the HAZ region, residual stresses are more dominant than the microstructure improving the fatigue crack growth resistance.  相似文献   

19.
The evaluation of the creep deformation and fracture behavior of a 2.25Cr-1Mo steel base metal, a 2.25Cr-1Mo/2.25Cr-1Mo similar weld joint, and a 2.25Cr-1Mo/Alloy 800 dissimilar weld joint at 823 K over a stress range of 90 to 250 MPa has been carried out. The specimens for creep testing were taken from single-V weld pads fabricated by a shielded metal arc-welding process using 2.25Cr-1Mo steel (for similar-joint) and INCONEL 182 (for dissimilar-joint) electrodes. The weld pads were subsequently given a postweld heat treatment (PWHT) of 973 K for 1 hour. The microstructure and microhardness of the weld joints were evaluated in the as-welded, postweld heat-treated, and creep-tested conditions. The heat-affected zone (HAZ) of similar weld joint consisted of bainite in the coarse-prior-austenitic-grain (CPAG) region near the fusion line, followed by bainite in the fine-prior-austenitic-grain (FPAG) and intercritical regions merging with the unaffected base metal. In addition to the HAZ structures in the 2.25Cr-1Mo steel, the dissimilar weld joint displayed a definite INCONEL/2.25Cr-1Mo weld interface structure present either as a sharp line or as a diffuse region. A hardness trough was observed in the intercritical region of the HAZ in both weld joints, while a maxima in hardness was seen at the weld interface of the dissimilar weld joint. Both weld joints exhibited significantly lower rupture lives compared to the 2.25Cr-1Mo base metal. The dissimilar weld joint exhibited poor rupture life compared to the similar weld joint, at applied stresses lower than 130 MPa. In both weld joints, the strain distribution across the specimen gage length during creep testing varied significantly. During creep testing, localization of deformation occurred in the intercritical HAZ. In the similar weld joint, at all stress levels investigated, and in the dissimilar weld joint, at stresses ≥150 MPa, the creep failure occurred in the intercritical HAZ. The fracture occurred by transgranular mode with a large number of dimples. At stresses below 150 MPa, the failure in the dissimilar weld joint occurred in the CPAG HAZ near to the weld interface. The failure occurred by extensive intergranular creep cavity formation.  相似文献   

20.
In the postweld heat-treated (PWHT) fusion welded modified 9Cr-1Mo steel joint, a soft zone was identified at the outer edge of the heat-affected zone (HAZ) of the base metal adjacent to the deposited weld metal. Hardness and tensile tests were performed on the base metal subjected to soaking for 5 minutes at temperatures below Ac1 to above Ac3 and tempering at the PWHT condition. These tests indicated that the soft zone in the weld joint corresponds to the intercritical region of HAZ. Creep tests were conducted on the base metal and cross weld joint. At relatively lower stresses and higher test temperatures, the weld joint possessed lower creep rupture life than the base metal, and the difference in creep rupture life increased with the decrease in stress and increase in temperature. Preferential accumulation of creep deformation coupled with extensive creep cavitation in the intercritical region of HAZ led to the premature failure of the weld joint in the intercritical region of the HAZ, commonly known as type IV cracking. The microstructures across the HAZ of the weld joint have been characterized to understand the role of microstructure in promoting type IV cracking. Strength reduction in the intercritical HAZ of the joint resulted from the combined effects of coarsening of dislocation substructures and precipitates. Constrained deformation of the soft intercritical HAZ sandwich between relatively stronger constitutes of the joint induced creep cavitation in the soft zone resulting in premature failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号