首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Genetically modified murine skeletal myoblasts were tissue engineered in vitro into organ-like structures (organoids) containing only postmitotic myofibers secreting pharmacological levels of recombinant human growth hormone (rhGH). Subcutaneous organoid implantation under tension led to the rapid and stable appearance of physiological sera levels of rhGH for up to 12 weeks, whereas surgical removal led to its rapid disappearance. Reversible delivery of bioactive compounds from postmitotic cells in tissue engineered organs has several advantages over other forms of muscle gene therapy.  相似文献   

2.
1. MDX mice derived from a colony of C57BL/10ScSn mice develop an X-linked recessive muscular dystrophy, thus providing an adequate model to study the pathogenesis of muscular dystrophy. 2. Skeletal myofibers of MDX mutant mice were heterogeneous, with disorganization of myofilaments and the absence of immunolabelling for dystrophin with monoclonal antibody DY4/6D3. 3. Marked deposition of reticulin, collagenic fiber (types, I, IV) and laminin (LN) were consistently present mostly around lesioned and necrotic myofibers associated with an intense inflammatory reaction, whereas strong immunolabelling for TIII-C, TIV-C and FN was often associated with regenerated fibers. 4. During the onset (3 weeks of postnatal life) of disease and height of myonecrosis (5-6 weeks of postnatal life), popliteal lymph nodes showed dense argyrophilic meshwork, intense immunolabelling for collagens types I and IV, FN, LN and enlargement of the hili which were packed with mononuclear cells. Such alterations, albeit less intense, were still observed in MDX mice with 20 weeks of postnatal life. 5. The results support the view that ECM components might be influencing the migration of inflammatory cells and the process of myonecrosis in the skeletal muscle of MDX dystrophic mice.  相似文献   

3.
Recombinant adeno-associated virus (AAV) vectors have been used to transduce murine skeletal muscle as a platform for secretion of therapeutic proteins. The utility of this approach for treating alpha-1-antitrypsin (AAT) deficiency was tested in murine myocytes in vitro and in vivo. AAV vectors expressing the human AAT gene from either the cytomegalovirus (CMV) promoter (AAV-C-AT) or the human elongation factor 1-alpha promoter (AAV-E-AT) were examined. In vitro in C2C12 murine myoblasts, the expression levels in transient transfections were similar between the two vectors. One month after transduction, however, the human elongation factor 1 promoter mediated 10-fold higher stable human AAT expression than the CMV promoter. In vivo transduction was performed by injecting doses of up to 1.4 x 10(13) particles into skeletal muscles of several mouse strains (C57BL/6, BALB/c, and SCID). In vivo, the CMV vector mediated higher levels of expression, with sustained serum levels over 800 micrograms/ml in SCID and over 400 micrograms/ml in C57BL/6 mice. These serum concentrations are 100,000-fold higher than those previously observed with AAV vectors in muscle and are at levels which would be therapeutic if achieved in humans. High level expression was delayed for several weeks but was sustained for over 15 wk. Immune responses were dependent upon the mouse strain and the vector dosage. These data suggest that recombinant AAV vector transduction of skeletal muscle could provide a means for replacing AAT or other essential serum proteins but that immune responses may be elicited under certain conditions.  相似文献   

4.
The majority of skeletal muscle fibers are generated through the process of secondary myogenesis. Cell adhesion molecules such as NCAM are thought to be intricately involved in the cell-cell interactions between developing secondary and primary myotubes. During secondary myogenesis, the expression of NCAM in skeletal muscle is under strict spatial and temporal control. To investigate the role of NCAM in the regulation of primary-secondary myotube interactions and muscle fusion in vivo, we have examined muscle development in transgenic mice expressing the 125-kD muscle-specific, glycosylphosphatidylinositol-anchored isoform of human NCAM, under the control of a human skeletal muscle alpha-actin promoter that is active from about embryonic day 15 onward. Analysis of developing muscle from transgenic animals revealed a significantly lower number of myofibers encased by basal lamina at postnatal day 1 compared with nontransgenic littermates, although the total number of developing myofibers was similar. An increase in muscle fiber size and decreased numbers of VCAM-1-positive secondary myoblasts at postnatal day 1 was also found, indicating enhanced secondary myoblast fusion in the transgenic animals. There was also a significant decrease in myofiber number but no increase in overall muscle size in adult transgenic animals; other measurements such as the number of nuclei per fiber and the size of individual muscle fibers were significantly increased, again suggesting increased secondary myoblast fusion. Thus the level of NCAM in the sarcolemma is a key regulator of cell-cell interactions occurring during secondary myogenesis in vivo and fulfills the prediction derived from transfection studies in vitro that the 125-kD NCAM isoform can enhance myoblast fusion.  相似文献   

5.
The mechanisms behind stimulation of protein synthesis in skeletal muscles following oral feeding are not well understood. Previous research has not confirmed that insulin is a major factor behind this stimulation. In the present study we have used genetically altered mice, with either a lack of GH secretion due to a mutational gene inactivation [GH (-/-) dwarf, DW/JOrlBom-dw] or mice with a homozygous site-specific insertion mutation in the insulin-like growth factor-1 gene [IGF-I (m/m)], leading to a deficient IGF-I production. These gene knock-outs were used in comparison to their normal wild types for evaluation of the role that the GH/IGF-I axis may have in activation of nutritionally induced stimulation of protein synthesis in skeletal muscles during oral refeeding. Weight stable adult C57B16 mice served as an additional normal control group. Protein synthesis was measured by a modified flooding dose technique with radioactive L-[14C-U]phenylalanine incorporation into acid precipitated muscle proteins. Fractional protein synthesis in skeletal muscles after an overnight fast was comparable among C57B16 (0.076 +/- 0.009%/h), wild-type IGF-I(+/+) (0.061 +/- 0.008) and IGF-I(m/m) deficient mice (0.068 +/- 0.006%/h), whereas GH(-/-) incompetent mice had a lower fractional synthesis rate compared with GH(+/+) competent mice (0.045 +/- 0.006 vs. 0.068 +/- 0.007, P < 0.05). Refeeding with standard chow diet stimulated protein synthesis in muscles by more than 60% in all animal groups. This response was independent of circulating GH, total IGF-I concentrations in blood, as well as up-regulation of locally produced IGF-I messenger RNA (mRNA) in skeletal muscles.  相似文献   

6.
To determine if chronic heart failure (CHF) leads to functional or structural alterations of skeletal muscle, we compared intracellular Ca2+ signaling, contractility, and the rate of fatigue development, together with electron microscopy (EM), in skeletal muscle preparations from rats with myocardial infarction-induced CHF versus sham-operated control rats. Bundles of 100 to 200 cells were dissected from the extensor digitorum longus (EDL) muscle of control (n = 13) and CHF (n = 19) rats and were either loaded with aequorin or fixed for EM. Muscles from CHF rats exhibited depressed tension development compared with control muscles during twitches (1.4 +/- 0.2 versus 2.8 +/- 0.7 g/mm2, P < .05) and maximal tetani (5.3 +/- 1.4 versus 10.7 +/- 2.4 g/mm2, P < .05). Depressed tension in CHF was accompanied by reduced quantitative [Ca2+]i release during twitches (0.7 +/- 0.1 versus 0.4 +/- 0.1 microM, P < .05) and during maximal tetani (1.8 +/- 0.3 versus 0.9 +/- 0.2 microM, P < .05). Skeletal muscle from CHF rats also demonstrated prolonged intracellular Ca2+ transients during twitches and tetani and accelerated fatigue development. EM revealed a lack of cellular atrophy in the CHF rats. In conclusion, EDL skeletal muscle from rats with CHF had intrinsic abnormalities in excitation-contraction coupling unrelated to cellular atrophy. These findings indicate that CHF is a condition accompanied by EDL skeletal muscle dysfunction.  相似文献   

7.
Female rats (7-8 mo old, n = 40) were randomly placed into the intact control (Int) and ovariectomized control (Ovx) groups. Two weeks after ovariectomy, animals were further divided into intact 2-wk hindlimb unloaded (Int-HU) and ovariectomized hindlimb unloaded (Ovx-HU). We hypothesized that there would be greater hindlimb unloading-related atrophy in Ovx than in Int rats. In situ contractile tests were performed on soleus (Sol), plantaris (Plan), peroneus longus (Per), and extensor digitorum longus (EDL) muscles. Body weight and Sol mass were approximately 22% larger in Ovx than in Int group and approximately 18% smaller in both HU groups than in Int rats (Ovx x HU interaction, P < 0.05), and there was a similar trend in Plan muscle (P < 0.07). There were main effects (P < 0.05) for both ovariectomy (growth) and hindlimb unloading (atrophy) on gastrocnemius mass. Mass of the Per and EDL muscles was unaffected by either ovariectomy or hindlimb unloading. Time to peak twitch tension for EDL and one-half relaxation times for Sol, Plan, Per, and EDL muscles were faster (P < 0.05) in Ovx than in Int animals. The results suggest that 1) ovariectomy led to similar increases of approximately 20% in body weight and plantar flexor mass; 2) hindlimb unloading may have prevented ovariectomy-related muscle growth; 3) greater atrophy may have occurred in Sol and Plan of Ovx animals compared with controls; and 4) removal of ovarian hormonal influence decreased skeletal muscle contraction times.  相似文献   

8.
To examine whether apoptosis related proteins are present in skeletal muscles we studied biopsied muscles immunohistochemically and by Western blot analysis. Biopsied muscles from patients with several disorders were studied with anti-Fas antibody and anti-BCL2 antibody. Type II muscle fibers identified by ATPase staining were positively stained by anti-Fas antibody in both normal control and diseased muscles. Anti-BCL2 antibody did not stain any muscle fibers. Western blot analysis using anti-Fas antibody showed a single band at 45 kDa in both skeletal muscle and lymphocytes. Anti-Fas antibody has been reported to induce apoptosis in the cells. The presence of anti-Fas antibody reactive materials in type II muscle fibers might be related to type II fiber atrophy in muscular disorders.  相似文献   

9.
Contractile performance of cardiac and skeletal muscles may be regulated by cyclic AMP or Ca2+, two second messengers that stimulate the phosphorylation of specific myofibrillar proteins. Cyclic AMP-dependent protein kinase catalyzed the rapid phosphorylation of a single site in the inhibitory subunit of cardiac troponin in vitro and in perfused hearts. Skeletal muscle troponin was not phosphorylated by this enzyme in vivo. Although there was a correlation between cardiac troponin phosphorylation and the positive inotropic response to catecholamines, a biochemical mechanism that could account for a functional relationship between the two processes has not been discovered. Phosphorylation of skeletal muscle myosin was catalyzed by myosin light chain kinase in the presence of Ca2+ and the ubiguitous, multifunctional Ca2+-dependent regulator protein (CDR). The activation of kinase activity appeared to proceed via a trimolecular reaction process in which Ca2+ bound to CDR and the Ca2+.CDR complex then interacted with the enzyme. In rat extensor digitorum longus muscle, a 1 sec tetanic contraction resulted in phosphorylation of myosin light chain with the maximal phosphate incorporated 20 sec after the contraction. The light chain phosphate content declined slowly and correlated to post-tetanic potentiation of isometric twitch tension. Phosphorylation of skeletal muscle myosin may be important in modulating contraction.  相似文献   

10.
Congestive heart failure (CHF) is characterized by a limb skeletal muscle myopathy with shift from the slow aerobic, fatigue resistant fibers, to the fast, anaerobic ones, and muscle bulk loss. Apoptosis (A) has been recently demonstrated to play a role in several cardiovascular diseases. AIM OF THE STUDY: we have investigated the role of A in the skeletal muscle of the hindlimbs in an experimental model of CHF. ANIMALS AND METHODS: CHF was induced in 7 males 80-100 g Sprague-Dawley rats with 30 mg/kg monocrotaline. Five age and diet matched controls were also studied. The time course of A was also studied in additional animals at day 0, 17, 24 and 30 days. RESULTS: At day 27 the electrophoretic analysis of myosin heavy chains (MHCs) demonstrated in the CHF rats the occurrence of a myopathy, with disappearance of slow MHC1 in the Tibialis Anterior (TA), and a significant shift from the slow to the fast isoforms in the soleus and EDL. With in situ DNA nick-end labelling (TUNEL) we found in the TA of CHF animals a significantly higher number of TUNEL positive nuclei (0.43 +/- 0.24 v 0.08 +/- 0.02, P<0.02 and TUNEL positive myonuclei (0.031 +/- 0.012 v 0.0025 +/- 0.005, P<0.02). The time course of A showed a progressive rise in interstitial and myocyte A, accompanied by a drop in fibers cross-sectional area and muscle weight/body weight, that came out to be significant at 30 days. Western blot showed a lower expression of Bcl-2 at 27 days and a further drop at 30 days in the CHF rats. Double staining for TUNEL and antibody against anti-MHC2a and anti MHC2b + 2x showed that A occurs non-selectively in all the myofiber types. BetaANP and Right Ventricle Mass/Volume (RVM/V) correlated significantly with total apoptotic nuclei. CONCLUSIONS: In CHF myofibers A can lead to muscle atrophy. Endothelial cells A may produce an imbalance in myofibres nutrition with relative ischemia that triggers the preferential synthesis of fast anaerobic myosin as an adaptive mechanism or alternatively induce myofibres death.  相似文献   

11.
Matrix metalloproteinases (MMPs) cooperatively degrade all components of the extracellular matrix (ECM). Remodeling of ECM during skeletal muscle degeneration and regeneration suggests a tight regulation of matrix-degrading activity during muscle regeneration. In this study, we investigated the expression of MMP-2 and MMP-9, in normal muscles and their regulation during regeneration process. We further investigated their secretion by C2C12 myogenic cell line. Two models of muscle degeneration-regeneration were used: (1) normal muscles in which necrosis was experimentally induced by cardiotoxin injection; (2) mdx muscles which exhibit recurrent signs of focal myofiber necrosis followed by successful regeneration. MMPs were studied by zymography; their free activity was quantified using 3H-labeled gelatin substrate and mRNA expression was followed by Northern hybridization. Muscle degeneration-regeneration was analyzed by conventional morphological methods and in situ hybridization was performed on muscle sections to identify the cells expressing these MMPs. Results show that MMP-2, but not MMP-9 expression, is constitutive in normal muscles. Upon injury, the active form of MMP-2 is transiently increased, whereas MMP-9 is induced within 24 h and remains present for several days. Quantitative assays of free gelatinolytic activity show a progressive and steady increase that culminates at 7 days postinjury and slowly returns to normal levels. In adult mdx mice, both pro and active forms of MMP-2 and MMP-9 are expressed. Northern blot results support these findings. Zymography of C2C12-conditioned medium shows that myogenic cells produce MMP-2. By in situ hybridization we localized MMP-9 mRNA in inflammatory cells and putative activated satellite cells in injured muscles. Our data allow the correlation of the differential expression of pro and/or active forms of MMP-2 and MMP-9 with different stages of the degeneration-regeneration process: MMP-9 expression is related to the inflammatory response and probably to the activation of satellite cells, whereas MMP-2 activation is concomitant with the regeneration of new myofibers.  相似文献   

12.
Congestive heart failure is often associated with skeletal muscle abnormalities that contribute to early fatigue and acidosis. Up to the present time, however, the mechanisms responsible for these changes are unclear. Myocardial infarctions were produced by coronary ligation in adult Sprague-Dawley rats. At 20 weeks, 10 control rats, and 15 animals with heart failure [defined by elevated LVEDP (26.1 +/- 3.1 v 2.5 +/- 0.5 mmHg) and RV hypertrophy (300 +/- 21 g v 158 +/- 9 mg)] underwent in vivo measurements of total body, and soleus total protein and myosin heavy chain (MHC) synthesis by [3H]leucine constant infusion. Soleus muscle was also analysed for protein content, and MHC isoenzyme content by SDS-PAGE. Northern blotting also was used to determine levels of the mRNA's encoding type I, IIa, IIb, and IIx MHC, alpha-skeletal actin, COX III, SDH and GAPDH. Soleus muscles in heart failure rats were smaller than controls (112 +/- 6 v 126 +/- 5 mg) and the degree of atrophy was significant when corrected for body mass (0.38 +/- 0.02 v 0.46 +/- 0.02 mg/g. P = 0.007). Although there was no significant difference in plasma leucine flux (an index of whole-body protein synthesis), soleus muscle total and MHC synthesis was reduced in heart failure animals. Whereas the Type I MHC isoenzyme (beta MHC) was the only MHC detected in the soleus of control animals, type II MHC isoenzyme comprised 11.8 +/- 3.1% of the MHC in the heart failure group. Furthermore, steady-state mRNA levels encoding beta MHC were significantly depressed in the heart failure rats, where those encoding Types IIb and IIx MHC were increased. Steady-state mRNA levels of alpha-skeletal actin, cytochrome C oxidase (COX III) and succinate dehydrogenase (SDH) were also significantly depressed. This animal model of chronic heart failure is associated with quantitative and qualitative alterations in skeletal muscle gene expression that are similar to those reported in skeletal muscle of patients with chronic heart failure. The altered phenotype and impaired metabolic capacity may contribute to exercise intolerance in CHF.  相似文献   

13.
It has been suggested that mast cells contribute to the phenotype of dystrophinopathies, but the mechanisms of their recruitment into the skeletal muscle remain hypothetical. The aim of this study is to quantify the presence of mast cells in muscle during the cellular events of myofibre degeneration and regeneration. For this purpose, we compare the mast cell profile in dystrophin-deficient mdx mice in which muscles exhibit spontaneous cycles of degeneration-regeneration from 3 weeks of age, with that in Swiss mice in which muscles were injured either by ischaemia or by notexin injection. Notexin is an A2-type phospholipase that rapidly disrupts myofibre plasma membranes, while ischaemia results in a slower process of degeneration. Both lesions are followed by a successful regeneration. In intact muscles, mast cell counts (mean +/- SEM/mm2) range from 1.8 +/- 1 to 4.3 +/- 1.6. The injection of notexin is far more potent in recruiting mast cells into damaged muscle than is ischaemia (118.5 +/- 13.0 vs 12.3 +/- 1.8/mm2). Thus we conclude that the early disruption of the myofibre membrane could elicit mast cell accumulation in skeletal muscle. This may explain the elevated number of mast cells observed in mdx muscles, as dystrophin deficiency is though to induce myofibre membrane leakage. On the other hand, mast cells are more numerous in muscles of young and adult mdx mice that are allowed to regenerate, than in muscles of older animals in which there is little regeneration and fibrosis develops. In injured muscles, the peak of mast cell number is at the onset of regeneration (by day 3 after notexin injection, and by day 11 after ischaemia), rather than during the phase of myofibre necrosis. Therefore, we suggest that the mast cells, through the effects of released mediators, could contribute to muscle regeneration.  相似文献   

14.
Cytochemical differentiation of two populations of developing skeletal myofibers has been demonstrated in fetal muscle with metachromatic fluorescence of ribonucleic acid and deoxyribonucleic acid by staining fresh frozed cryostat sections of developing porcine skeletal muscle with acridine orange (CL. 46005). Evidence is presented that supports the hypothesis that first-formed myofibers (primary myofibers) serve as a structural framework upon which myoblasts proliferate, fuse in linear sequence and give rise to a second population (secondary myofibers) of myofibers.  相似文献   

15.
Skeletal muscle has a remarkable capacity to regenerate after injury, although studies of muscle regeneration have heretofore been limited almost exclusively to limb musculature. Muscle precursor cells in skeletal muscle are responsible for the repair of damaged muscle. Heterogeneity exists in the growth and differentiation properties of muscle precursor cell (myoblast) populations throughout limb development but whether the muscle precursor cells differ among adult skeletal muscles is unknown. Such heterogeneity among myoblasts in the adult may give rise to skeletal muscles with different regenerative capacities. Here we compare the regenerative response of a masticatory muscle, the masseter, to that of limb muscles. After exogenous trauma (freeze or crush injuries), masseter muscle regenerated much less effectively than limb muscle. In limb muscle, normal architecture was restored 12 days after injury, whereas in masseter muscle, minimal regeneration occurred during the same time period. Indeed, at late time points, masseter muscles exhibited increased fibrous connective tissue in the region of damage, evidence of ineffective muscle regeneration. Similarly, in response to endogenous muscle injury due to a muscular dystrophy, widespread evidence of impaired regeneration was present in masseter muscle but not in limb muscle. To explore the cellular basis of these different regenerative capacities, we analyzed the myoblast populations of limb and masseter muscles both in vivo and in vitro. From in vivo analyses, the number of myoblasts in regenerating muscle was less in masseter compared with limb muscle. Assessment of population growth in vitro indicated that masseter myoblasts grow more slowly than limb myoblasts under identical conditions. We conclude that the impaired regeneration in masseter muscles is due to differences in the intrinsic myoblast populations compared to limb muscles.  相似文献   

16.
Amyloid deposition in skeletal muscle is a well-recognized but rare occurrence. Sixteen such cases seen in a 17-year period (1979 to 1996) out of a total of 3,937 muscle biopsy specimens (0.004%) form this study group. Either Congo red or sulfated alcian blue stains were routinely performed in each biopsy to screen for amyloid. Patients in this study (eight men, eight women) ranged in age from 42 to 90 years (mean, 61 years) at initial presentation. The most common symptoms at presentation included weakness/fatigue (n = 10), autonomic symptoms (n = 8), and weight loss/decreased appetite (n = 7). Five patients had a concomitant malignancy (myeloma, n = 3; malignant carcinoid tumor, n = 1; melanoma, n = 1). Two patients had known hereditary forms of amyloidosis. Five patients had amyloid diagnosed on another organ biopsy (excluding peripheral nerve). Histologically, amyloid was deposited in the interstitium or perivascular region in 14 muscles and endomysial region in seven muscles. All cases were confirmed with Congo red staining (apple green birefringence) or by electron microscopic identification of fibrillary amyloid material. Scattered angular atrophic esterase-positive muscle myofibers indicative of acute denervation atrophy were seen in 14 muscles. Eight muscles showed small group atrophy, and seven showed myofiber type grouping. Scattered regenerating muscle fibers were seen in nine cases, degenerating myofibers in six, and foci of chronic endomysial and perivascular inflammation in two. Four muscles showed type II muscle fiber atrophy. A concomitant sural nerve biopsy specimen was evaluated in seven patients; all seven contained amyloid, confirmed either by Congo red staining or electron microscopic examination. In two nerves, there was a mild loss of myelinated axons; four had a moderate loss, and one, severe loss. Six of seven nerves showed predominantly axonopathic changes. In conclusion, (1) the prevalence rate of amyloid myopathy in muscle biopsy specimens was low (in this series, 0.004%); (2) only a minority of patients had multiple myeloma, and most presented with muscle weakness/fatigue or autonomic symptoms; (3) most of the muscles showed neurogenic features histologically; (4) all concomitant sural nerve biopsy specimens contained amyloid, and most showed a predominance of axonopathic changes.  相似文献   

17.
The effect of low-energy laser (He-Ne) irradiation on the process of skeletal muscle regeneration after cold injury to the gastrocnemius muscle of the toad (Bufo viridis) was studied using quantitative histological and morphometric methods. The injured zones in the experimental toads were subjected to five direct He-Ne laser (632.8 nm wavelength) irradiations (6.0 mW for 2.3 min) every alternate day starting on the fourth day postinjury. Muscles that were injured as above, and subjected to red-light irradiation, served as a control group. Morphometric analysis was performed on histological sections of injured areas at 9, 14, and 30 days postinjury. At 9 days postinjury, mononucleated cells populated 69.3% +/- 16.8% of the total area of injury. Thereafter, their volume fraction (percent of total injured zone) decreased gradually but more rapidly in the laser-irradiated muscle than in the control. The volume fraction of the myotubes in the laser-irradiated muscles at 9 days of muscle regeneration was significantly higher (7.0% +/- 2.2%) than in the control muscle (1.2% +/- 0.4%). Young myofibers in the laser-irradiated muscles populated 15.5% +/- 7.9% and 65.0% +/- 9.5% of the injured area at 9 and 14 days of muscle regeneration, respectively, while in control muscles these structures were not evident at 9 days and made up only 5.3% +/- 2.9% of the traumatized area at 14 days postinjury. The volume fraction of the young myofibers further increased by 30 days of muscle regeneration making up 75.7% +/- 13.2% of the traumatized area, while in the laser-irradiated muscles most of the injured zone was filled with mature muscle fibers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
A proteolysis-inducing factor (PIF) isolated from a cachexia-inducing murine tumour (MAC16) produced a decrease in body weight (1.6 g, P < or = 0.01 compared with control subjects) within 24 h after i.v. administration to non-tumour-bearing mice. Weight loss was associated with significant decreases in the weight of the spleen and soleus and gastrocnemius muscles, with no effect on the weight of the heart or kidney and with an increase in weight of the liver. Protein degradation in isolated soleus muscle was significantly increased in mice bearing the MAC16 tumour. To define which proteolytic pathways contribute to this increase, soleus muscles from mice bearing the MAC16 tumour and non-tumour-bearing animals administered PIF were incubated under conditions that modify different proteolytic systems. In mice bearing the MAC16 tumour, there were increases in both cathepsin B and L, and the Ca2+-dependent lysosomal and ATP-dependent pathways were found to contribute to the increased proteolysis; whereas, in PIF-injected animals, there was activation only of the ATP-dependent pathway. Further studies in mice bearing the MAC16 tumour have provided evidence for increased levels of ubiquitin-conjugated proteins and increased mRNA levels for the 14 kDa ubiquitin carrier protein E2 and the C9 proteasome subunit in gastrocnemius muscle, suggesting activation of the ATP-ubiquitin-dependent proteolytic pathway. A monoclonal antibody to PIF attenuated the enhanced protein degradation in soleus muscle from mice bearing the MAC16 tumour, confirming that PIF is responsible for the loss of skeletal muscle in cachectic mice.  相似文献   

19.
During the early development of skeletal muscle, cardiac isotypes of several contractile proteins are known to be transiently expressed. We report here that skeletal muscle developing in vivo, as well as primary cultures derived from skeletal muscle, express mRNA encoding the cardiac dihydropyridine-sensitive calcium channel. The mRNA is detectable at high concentration at the earliest stage tested in vivo and diminishes rapidly in concentration as myofibers mature. The concentration of the cardiac calcium channel mRNA also diminishes during the in vivo development of skeletal muscle in a genetically paralyzed mouse (mdg), indicating that muscle contractile activity is not necessary for the down-regulation. In contrast, mRNA for the skeletal muscle-specific calcium channel accumulates gradually in developing skeletal muscle. A similar temporal pattern of expression is also seen in primary cultures of skeletal myotubes. These results raise the question of whether the cardiac calcium channel may be functionally important during the early development of skeletal myofibers.  相似文献   

20.
Confocal laser-scanning and digital fluorescence imaging microscopy were used to quantify the mitochondrial autofluorescence changes of NAD(P)H and flavoproteins in unfixed saponin-permeabilized myofibers from mice quadriceps muscle tissue. Addition of mitochondrial substrates, ADP, or cyanide led to redox state changes of the mitochondrial NAD system. These changes were detected by ratio imaging of the autofluorescence intensities of fluorescent flavoproteins and NAD(P)H, showing inverse fluorescence behavior. The flavoprotein signal was colocalized with the potentiometric mitochondria-specific dye dimethylaminostyryl pyridyl methyl iodide (DASPMI), or with MitoTrackerTM Green FM, a constitutive marker for mitochondria. Within individual myofibers we detected topological mitochondrial subsets with distinct flavoprotein autofluorescence levels, equally responding to induced rate changes of the oxidative phosphorylation. The flavoprotein autofluorescence levels of these subsets differed by a factor of four. This heterogeneity was substantiated by flow-cytometric analysis of flavoprotein and DASPMI fluorescence changes of individual mitochondria isolated from mice skeletal muscle. Our data provide direct evidence that mitochondria in single myofibers are distinct subsets at the level of an intrinsic fluorescent marker of the mitochondrial NAD-redox system. Under the present experimental conditions these subsets show similar functional responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号