首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we have developed a rapid method for the simultaneous detection of Listeria monocytogenes and Salmonella spp. in foods, combining culture enrichment and a multiplex real-time polymerase chain reaction (PCR). The assay used two pre-existing primer-probe sets, labelled with different reporter dyes to enable the direct distinction of the original contaminating agent. Amplification efficiency and inclusivity/exclusivity of the combined assay was successfully assessed. The overall process included the culture enrichment based on the ISO standard, consisting of 24 h incubation in appropriate media (Half Fraser Broth for Listeria and buffered peptone water (BPW) for Salmonella), followed by a single DNA extraction of mixed enrichment aliquots, and real-time PCR detection of the hly and bipA genes of L. monocytogenes and Salmonella spp., respectively. An internal amplification control, co-amplified during the PCR run, was included in the assay to verify the results. The tool was evaluated with a variety of artificially inoculated samples of fresh products and ready to eat and cooked dishes, allowing the identification of the target pathogens down to 5 CFU/25 g of food sample. Moreover, the analysis saved a considerable amount of time compared to the ISO standard, being performed in less than 2 working days. Specificity, sensitivity and accuracy were satisfactorily tested by comparison to the standard methods ISO 11290-2:1998 and ISO 6579:2002, suggesting that the tool has a great potential as a reliable alternative for food safety assurance providing rapid detection of both pathogens in food samples.  相似文献   

2.
A real-time polymerase chain reaction (PCR) method for Salmonella ssp. detection in food samples has been developed and validated in-house. The specificity of the assay was confirmed by tests with 295 different Salmonella strains, including four strains of Salmonella bongori. When tested with extracted Salmonella DNA the lowest detected amount was found to be 5 fg, which is equivalent to approximately one genome copy. The detection limit was further determined by artificial contamination of minced meat with S. Typhimurium cells and of pastry with S. enteritidis using the most probable number approach for cell dose dilutions. It was calculated that even one colony forming unit of Salmonella was still detectable in 25 g food after enrichment culture for 18 h. An additional PCR system for internal positive control, which was included in each reaction and detected in parallel via another reporter fluorescence dye, has no negative impact on the sensitivity of the assay. The method was evaluated with 1,293 naturally contaminated food samples and compared to the conventional cultural method. Of 55 positive PCR samples, 45 were confirmed by the cultural method. The statistical comparison revealed a correlation of 99.2% for specificity, of 100% for sensitivity and of 99.2% for trueness. The results of the comparative analysis and the advantages of the real-time PCR method for detection of Salmonella ssp. under routine laboratory conditions are discussed.  相似文献   

3.
A straightforward real-time polymerase chain reaction (PCR)-based assay was designed and evaluated for the detection of Salmonella spp. in food and water samples. This new assay is based on the specific detection of the bipA gene of Salmonella, which encodes a protein of the guanosine triphosphate (GTP)-binding elongation family that displays global modulating properties, by regulating a wide variety of downstream processes. The new method correctly identified all 48 Salmonella strains used in the inclusivity test, and did not detect all 30 non-Salmonella species tested. The method was evaluated by analyzing 120 diverse food and water samples enriched in buffered peptone water. The bipA-based real-time PCR assay showed 100% efficiency, sensitivity, and specificity compared to the invA-based method previously published, which was developed as a part of a European project for the standardization of PCR methods in food microbiology. The assay includes an independent internal amplification control (IAC) in each reaction to control false negative results.  相似文献   

4.
A 7-plex PCR assay was developed to achieve an effective detection and identification of serotype Enteritidis of Salmonella spp. and shiga toxin-producing type of Escherichia coli O157 in meat products. Six DNA sequences in the invA and sdfI genes of Salmonella Enteritidis as well as rfbE, eae, stx1, and stx2 genes of E. coli O157:H7 were employed to design primers. The multiplex PCR assay could specifically and sensitively detect and identify target pathogens. Applying the assay to meat samples, the multiplex PCR assay was able to simultaneously detect and identify the two pathogens at a sensitivity of three CFU/10 g raw meats after simple 16 h enrichment in buffered peptone water. Further applying in 21 retail meat samples revealed that two samples were positive for non-shiga toxin producing E. coli O157, one sample was positive for Stx2 producing E. coli O157 and five samples were positive for Salmonella enterica Enteritidis. Taken together, the 7-plex PCR assay is a rapid and reliable method for effectively screening single or multiple pathogens occurrences in various meat products, and could also identify the Salmonella enterica Enteritidis from all Salmonella spp. and shiga toxin producing type from all E. coli strains. Considering as a non expensive screening tool, the multiplex PCR assay has a great potential in complement for food stuff analysis by conventional microbiological tests.  相似文献   

5.
Salmonella has been recognized as a major foodborne pathogen for humans and animals. In this study, a multiplex real-time recombinase polymerase amplification (RPA) was developed for simultaneous detection of Salmonella enterica serovars, Salmonella enteritidis and Salmonella typhimurium, from chicken, eggs, lettuce, and papaya. The reaction was performed for 20 min at 35°C, and the detection limit of the assay was 102 CFU/ml for pure culture. In food application, the limit of detection (LOD) of S. enteritidis and S. typhimurium using multiplex real-time RPA without enrichment procedure was 102 CFU/25 g, respectively. After enrichment, the LOD of S. enteritidis and S. typhimurium was 10 CFU/25 g. Moreover, the result for Salmonella spp. was not significantly different from those obtained using a culture-based method. Additionally, the assay has a lower cross-reactivity with other pathogenic microorganisms and a good stability performance. Thus, the developed multiplex RPA assay could be used as a rapid tool for the detection of S. enteritidis and S. typhimurium in food.  相似文献   

6.
Contamination of powdered infant formula (PIF) by the bacteria Cronobacter spp. and Salmonella enterica was deemed a matter of great concern by the World Health Organization and the Food and Agriculture Organization of the United Nations in 2004. Therefore, we developed a rapid and sensitive multiplex real-time PCR assay for the simultaneous detection of Cronobacter and Salmonella in PIF. In addition, an internal amplification control (IAC) was also included for exclusion of false negative results in this study. The quantitative detection range for pure cultures in this optimized multiplex real-time PCR assay was 103 to 108 CFU/ml for both Salmonella and Cronobacter. When our established multiplex real-time PCR system was applied to artificially contaminated PIF, the detection limit was 103 CFU/ml for Salmonella and Cronobacter without enrichment. The commercial PIF was then inoculated with Salmonella and Cronobacter at 10, 1 and 0.1 CFU per gram of formula and the single enrichment broth samples were analyzed by multiplex real-time PCR after enrichment for 9, 12, and 24 h. At 12 h post-enrichment, we could detect Salmonella and Cronobacter at initial inoculation levels of approximately 0.1 CFU/g in PIF. Additionally, stable fluorescent IAC signals could be assessed between 29 and 34 cycles of PCR amplification. Results from this study showed that the multiplex real-time PCR assay is an effective method for the rapid and simultaneous detection and quantification of Cronobacter and Salmonella in PIF.  相似文献   

7.
Overuse of antibiotics in the medical and animal industries is one of the major causes for the development of multi-drug-resistant (MDR) food pathogens that are often difficult to treat. In the past few years, higher incidences of outbreaks caused by MDR Salmonella have been increasingly documented. The objective of this study was to develop a rapid multiplex real-time polymerase chain reaction (PCR) assay for simultaneous detection of pathogenic and MDR Salmonella spp. A multiplex TaqMan®real-time PCR was designed by targeting the invasin virulence gene (invA), and four commonly found antibiotic resistance genes, viz. ampicillin, chloramphenicol, streptomycin and tetracycline. To avoid false negative results and to increase the reliability of the assay, an internal amplification control (IAC) was added which was detected using a locked nucleic acid (LNA) probe. In serially diluted (5 ng–50 fg) DNA samples, the assay was able to detect 100 genomic equivalents of Salmonella, while in a multiplex format, the sensitivity was 1000 genomic equivalents. The assay performed equally well on artificially contaminated samples of beef trim, ground beef of different fat contents (73:27, 80:20, 85:15 and 93:7), chicken rinse, ground chicken, ground turkey, egg, spinach and tomato. While the detection limit for un-enriched inoculated food samples was 104 CFU/g, this was improved to 10 CFU/g after a 12-h enrichment in buffered peptone water, with 100% reproducibility. The multiplex real-time assay developed in this study can be used as a valuable tool to detect MDR virulent Salmonella, thus enhancing the safety of food.  相似文献   

8.
DNA isolation procedures significantly influence the outcome of PCR-based detection of human pathogens. Unlike clinical samples, DNA isolation from food samples, particularly from fresh and fresh-cut produce has remained a formidable task and has hampered the sensitivity and accuracy of molecular methods. We utilized a commercially available filter-based DNA isolation method (FTA) in conjunction with real-time PCR-based detection of Salmonella spp. and Listeria monocytogenes. The protocol uses filter paper discs impregnated with a patented chemical formulation that lyses cells, immobilizes DNA, and protects it from degradation. Use of the FTA method in conjunction with real-time PCR for the detection of Salmonella spp. and L. monocytogenes was compared with two commercially available DNA isolation procedures that are commonly used for high throughput real-time PCR pathogen detection systems. Both pathogens were successfully detected from artificially inoculated fresh and fresh-cut produce such as alfalfa sprouts, cilantro, green onion, broccoli, prepacked mixed salad, and spinach at low cell numbers (four to seven colony forming units per 25 g initial inoculum level before enrichment). The FTA protocol had distinct advantages of simplicity, biosafety, and compatibility for high throughput screening. This DNA preparation protocol was rapid, sensitive, required minimal handling, and reduced interference from produce-associated inhibitors of real-time PCR. Mention of brand names does not constitute an endorsement by the U.S. Department of Agriculture above others of a similar nature not mentioned.  相似文献   

9.
Salmonella belongs to the most important bacterial pathogens worldwide causing disease in humans and animals mainly by the oral uptake of contaminated food. Consequently, detection methodologies for Salmonella from food items are meaningful for routine laboratories. Here, we describe two different real-time PCR based methods for the detection of Salmonella in food. The procedure begins with a cultural pre-enrichment in buffered peptone water for 18–24 hours at 37 °C followed by a selective enrichment step in Rappaport-Vassiliadis medium for at least six hours at 42 °C. Next, the microbial DNA is extracted and finally Salmonella-DNA is specifically detected by the real-time PCR. Both methods differ in the Salmonella target gene sequence. One assay amplifies a 285-bp-DNA-Fragment of the invA-gene, and the other a 95-bp-DNA-Fragment of the ttrC/ttrA-gene. An internal amplification control indicates the correct carrying out of the PCR. The duration of both detection methods is between 24 and 28 hours.  相似文献   

10.
In this study, a combined enrichment/real-time PCR method for the rapid detection of Salmonella on fresh meat carcasses, was designed, developed and validated in-house following requirements outlined in ISO 16140:2003. The method included an 18 h non-selective enrichment in buffered peptone water (BPW) and a 6 h selective enrichment in Rappaport Vasilliadis Soya (RVS) broth, based on the traditional culture method, ISO 6579:2002. The real-time PCR assay included an internal amplification control (IAC), was 100% specific and was sensitive to one cell equivalent. The alternative method was validated against the traditional culture method and relative accuracy of 94.9%, sensitivity of 94.7% and specificity of 100% were determined using 150 fresh meat carcass swabs. This alternative method had a detection limit of 1–10 CFU/100 cm2 for fresh meat carcass swabs and was performed in 26 h. Following further inter-laboratory studies, this alternative method could be suitable for implementation in testing laboratories for the analysis of carcass swabs.  相似文献   

11.
A loop-mediated isothermal amplification (LAMP) assay was developed and validated for the specific detection of Salmonella in food. The four primers required for LAMP were designed using a conserved region in the histidine transport protein-coding region of Salmonella. Seventy-nine reference strains of 72 Salmonella serovars and 23 non-Salmonella strains were detected by LAMP. The detection limit of this assay is 16?CFU per reaction in pure culture, up to tenfold more sensitive than that of the PCR assay with the same target gene. When applied in raw food samples, a sample pretreatment protocol was performed that included a pre-enrichment step in 0.1?% buffered peptone water, followed by a selective enrichment in Rappaport–Vassiliadis medium. Using this method, 200 assorted food samples were investigated for Salmonella, including fresh pork, whole chickens, and green vegetables. The sensitivity of LAMP for the detection of Salmonella in food samples was 93.55?%, versus 87.10?% that tested positive using conventional PCR. The results from this study showed that the HisJ-based LAMP is an effective method for the detection of foodborne Salmonella.  相似文献   

12.
13.
Multiplex PCR assay (mPCR) for the detection of Salmonella spp. and S. Enteritidis was developed in this study using artificially contaminated chicken carcasses. The assay showed 100% specificity to detect approximately 1 CFU of Salmonella in 10 g of chicken skin after non‐selective enrichment. The mPCR was evaluated in Minas cheese, fresh pork sausage and chicken carcasses commercially available. Salmonella spp. was detected in nine of sixty‐six chicken carcasses, five of fifty‐two cheese samples, and five of fifty‐two sausage samples. The serovar Enteritidis was detected in two samples of contaminated sausage. The mPCR results were confirmed by conventional culture and biochemical identification of the isolates. Serotyping confirmed the presence of S. Enteritidis in sausage samples and showed contamination by serovars Schwarzengrund and Montevideo in chicken carcasses.  相似文献   

14.
A real-time PCR system with an internal amplification control was developed for detection of pathogenic Yersinia) enterocolitica in food samples. The chromosomally encoded ail gene was chosen as PCR target. Sequences of plasmid pUC19 served as target for the internal amplification control. The method was validated in combination with sample enrichment in PSB and TSB broth using different food matrices spiked with Y. enterocolitica and naturally contaminated slaughterhouse samples. The results of the real-time PCR with internal control were verified by the cultural method according to EN ISO 10273:2003. The sensitivity of the real-time PCR with internal control is about 5 genome copies per reaction. Artificial contamination of food samples resulted in a detection level of 5 cfu per 25 g Y. enterocolitica in food samples. 100% of porcine tonsils and about 22% meat from pig heads were contaminated. The screening of samples by PCR prior to cultural analysis allows focusing on positive samples in routine analysis. This could result in a higher detection rate by cultural analysis.  相似文献   

15.
In this study, a novel dual priming oligonucleotide (DPO) system-based polymerase chain reaction (PCR; DPO system-based PCR) assay, which detected the fimY gene of Salmonella, was developed for the fast food testing. The DPO system-based PCR assay allowed a wide range of annealing temperatures at 48–68°C to efficiently amplify fimY gene with an analytical detection limit of 1.2 × 102 CFU/ml for Salmonella in pure cultures and artificially contaminated food matrix. Significantly, the presence of a bubble-like polydeoxyinosine (polyI) linker in the DPO system brought an unparalleled high specificity in the identification of target bacteria, and consequently, the false positives and mismatches of PCR process can be eliminated in priming. Applying the DPO system-based PCR assay to 285 collected food samples revealed that 29 samples were positive in this assay, in accordance with the results of conventional culture-based method, indicating a potential diagnostic capability. The high specificity of the DPO system-based PCR indicates its great potential to be a quick, reliable and practical method for the detection of Salmonella in foods.  相似文献   

16.
In this study, we developed a rapid and sensitive fimY-based loop-mediated isothermal amplification (LAMP) assay on a real-time turbidimeter platform for the detection of Salmonella in food. Since turbidity of the reaction mixture would increase in correlation with the DNA yield, real-time monitoring of the LAMP reaction was achieved by real-time turbidimeter. Time threshold values which indicate positive results for 81 Salmonella strains of different serotypes ranged from 36 to 40 min. For the 20 non-Salmonella strains, turbidity did not increase in the reaction mixture. When testing 10-fold serial dilutions of Salmonella Typhimurium-ATCC 14128 DNA by LAMP, the time threshold ranged from 36 to 52 min on the real-time turbidimeter. The detection limit was 13 cells per reaction in pure culture, up to 10-fold more sensitive than that of PCR. When applied in deli food samples, the LAMP assay was able to detect Salmonella even though the sample was contaminated with very low concentration after 3 h enrichment culture. Increase in turbidity was observed on real-time turbidimeter. Additionally, the LAMP results detected by naked-eye or turbidity consistently matched with each other. Results from this study showed that the fimY-based LAMP assay is an effective method for the rapid detection of Salmonella.  相似文献   

17.
A comparative study of enzyme-linked fluorescent assay (ELFA)-based methods and real-time polymerase chain reaction (PCR)-based methods using three and two different sample preparation protocols, respectively, and the standard culture-based method EN ISO 6579:2002/Amd1:2007, for the detection of Salmonella spp. in chicken feces, was performed on 20 artificially and 68 naturally contaminated chicken feces. Selectivity, relative specificity, relative accuracy, relative sensitivity, and relative detection level were determined. According to criteria established in the methods comparison study included in EN ISO 16140:2003 for validation of alternative microbiological methods, the ELFA-based methods (V1 and V2) as well as a real-time PCR method (PCR2) were comparable to the reference method for the detection of Salmonella in chicken feces. They provided results in 48 h and presented a high sensitivity (97% for all of them). The three methods showed a relative specificity of 94%, V1 being the method which presented the highest relative accuracy (96%). While detection level for V2 and reference method was between 3 and 13 CFU/25 g, PCR2 method was able to detect down to 3 CFU/25 g. In conclusion, both the real-time PCR and the ELFA-based assays can be used as rapid and user-friendly screening methods for detection of Salmonella spp. in chicken feces.  相似文献   

18.
We present a new nucleic acid lateral flow immunoassay (NALFIA) for the assessment of listeria contamination. The detection procedure starts with enrichment of sample in Half Fraser broth (24 h). Following isolation of DNA, a duplex PCR is performed with two labelled primer sets, one generic and directed to a specific sequence of the gene encoding 16S rRNA from Listeria spp. and the other specific and directed to a part of the prfA gene encoding the central virulence gene regulator from the food pathogen Listeria monocytogenes (3.5 h). The PCR solution is directly added to the one-step assay device and the appearance of a grey/black line is indicative of the presence of specific amplicons (max 15 min). In all tests performed, the method correctly identified L. monocytogenes and strains of Listeria spp. PCR material of over 20 food samples was tested by NALFIA. The method proved to be useful for the detection of L. monocytogenes in different kinds of food samples.  相似文献   

19.
In this study, a real-time polymerase chain reaction (PCR)-based method was designed for the fast detection of Cronobacter spp. (a newly proposed genus formerly known as Enterobacter sakazakii) in infant formula. The real-time PCR was positively tested with 70 Cronobacter strains, including members of all the species of this genus, and 88 non-Cronobacter strains. This new PCR-based system was validated against the reference standard ISO/TS 22964: 2006 (ISO International Organization for Standardization 2006) using 70 food matrices including powdered infant formula, follow-up formula, and hydrolyzed cereals for infants. The detection limit of the technique was found to be of 1 cfu in 10 g of food, fulfilling the requirements of the European Commission. The time of analysis, which comprises around 3–6 days using the reference method, is considerably reduced to less than 24 h using the real-time PCR-based system hereby described, allowing food industry a faster release of the stocks for commercialization. Moreover, this method includes an internal amplification control, co-amplified during each PCR run to verify the results.  相似文献   

20.
A multiplex loop-mediated isothermal amplification-RFLP (mLAMP-RFLP) was developed and validated for simultaneous detection of Salmonella strains and Shigella strains in milk. In this system, two sets of LAMP primers were designed to specifically target invA of Salmonella spp. and ipaH of Shigella spp. Under isothermal conditions at 63 °C, ladder pattern of DNA bands could be amplified within 60 min in the presence of genomic DNAs of Salmonella strains and Shigella strains, which could be distinguished between Salmonella spp. and Shigella spp. simultaneously based on the different ladder pattern of DNA bands and subsequent restriction enzyme analysis. The overall analysis time was approximately 20 h including the enrichment of the bacterial cells, which greatly saved detection time. The sensitivity of mLAMP was found to be 100 fg DNA/tube with genomic DNAs of Salmonella strains and Shigella strains, comparatively, multiplex PCR was 1 pg DNA/tube. The mLAMP allowed the detection of milk sample artificially contaminated by Salmonella strains and Shigella strains at initial inoculation levels of approximate 5 CFU/10 mL. In conclusion, the mLAMP described here can potentially facilitate simultaneous monitoring of Salmonella and Shigella in a large number of food samples, which could be used as a primary screening method and as a supplement to classical detection method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号