首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of 2-substituted methyl 2,3-dihydroimidazo[1, 2-c]quinazolin-5(6H)-ones (4), 3-substituted methyl 2, 3-dihydroimidazo[1,2-c]quinazolin-5(6H)-ones (5), 3-substituted methyl 2,3-dihydro-5H-thiazolo[2,3-b]quinazolin-5-ones (15a,b), 3-substituted methyl 2,3-dihydroimidazo[2,1-b]quinazolin-5(1H)-ones (16a,b), 3-substituted methyl 2,3-dihydro-1H-imidazo[1,2-b][1,2, 4]benzothiadiazine 5,5-dioxides (33a,b), 2-substituted methyl imidazo[1,2-c]quinazolin-5(6H)-ones (42-45a,b), 3-substituted methyl imidazo[1,2-c]quinazolin-5(6H)-ones (50-53a,b), 3-substituted methyl 5H-thiazolo[2,3-b]quinazolin-5-ones (55-56a,b), and 3-substituted methyl 5-(methylthio)-2,3-dihydroimidazo[1,2-c]quinazoline (57) were synthesized as compound 1conformational rigid congeners for pharmacological evaluation as potential alpha1-adrenoceptor antagonists. Compounds 4, 5, 33a,b, 44a,b, 45a,b, 52a,b, 53a,b, and 57 were found to possess high affinity for the alpha1-adrenoceptor. Compounds 5 and 57 were the most highly selective and potent alpha1 antagonists with Ki = 0.21 +/- 0.02 and 0.90 +/- 0.08 nM, respectively. The S-enantiomers of these two compounds (Ki = 0.13 +/- 0.01 nM for (S)-(-)-5; Ki = 1.0 +/- 0.2 nM for (S)-(+)-57) were 144-200-fold more potent than the R-enantiomers (Ki = 26 +/- 8 nM for (R)-(+)-5; Ki = 144 +/- 23 nM for (R)-(-)-57). Compound 4 showed 8-fold higher affinity to alpha1A-AR better than alpha1B-AR. These compounds possessed weak to no activity against the 5-HT1A receptor.  相似文献   

2.
A series of 8-substituted derivatives of 3,7-dimethyl-1-propargylxanthine (DMPX) was synthesized and investigated as A2A adenosine receptor antagonists. Different synthetic strategies for the preparation of DMPX derivatives and analogues were explored. A recently developed synthetic procedure starting from 3-propargyl-5,6-diaminouracil proved to be the method of choice for the preparation of this type of xanthine derivatives. The novel compounds were investigated in radioligand binding studies at the high-affinity adenosine receptor subtypes A1 and A2A and compared with standard A2A adenosine receptor antagonists. Structure-activity relationships were analyzed in detail. 8-Styryl-substituted DMPX derivatives were identified that exhibit high affinity and selectivity for A2A adenosine receptors, including 8-(m-chlorostyryl)-DMPX (CS-DMPX, Ki A2A = 13 nM, 100-fold selective), 8-(m-bromostyryl)-DMPX (BS-DMPX, Ki A2A = 8 nM, 146-fold selective), and 8-(3,4-dimethoxystyryl)-DMPX (Ki A2A = 15 nM, 167-fold selective). These and other novel compounds are superior to the standard A2A adenosine receptor antagonists KF17837 (4) and CSC (5) with respect to A2A affinity and/or selectivity.  相似文献   

3.
Previously we have reported the discovery of ABT-627 (1, A-147627, active enantiomer of A-127722), a 2,4-diaryl substituted pyrrolidine-3-carboxylic acid based endothelin receptor-A antagonist. This compound binds to the ETA receptor with an affinity (Ki) of 0. 034 nM and with a 2000-fold selectivity for the ETA receptor versus the ETB receptor. We have expanded our structure-activity studies in this series, in an attempt to further increase the ETA selectivity. When the p-anisyl group of 1 was replaced by an n-pentyl group, the resultant antagonist 3 exhibited substantially increased ETB/ETA activity ratio, but a decreased ETA affinity. Structure-activity studies revealed that substitution and geometry of this alkyl group, and substitution on the benzodioxolyl ring, are important in optimizing this series of highly ETA selective antagonists. In particular, the combination of a (E)-2,2-dimethyl-3-pentenyl group and a 7-methoxy-1,3-benzodioxol-5-yl group provided hydrophobic compound 10b with subnanomolar affinity for human ETA receptor subtype and with an ETB/ETA activity ratio of over 130000. Meanwhile, synthetic efforts en route to olefinic compounds led to the discovery that 2-pyridylethyl (9o) and 2-(2-oxopyrrolidinyl)ethyl (9u) replacement of the p-anisyl group of 1yielded very hydrophilic ETA antagonists with potency and selectivity equal to those of 10b. On the basis of overall superior affinity, high selectivity for the ETA receptor (Ki, 0.46 nM for ETA and 13000 nM for ETB), and good oral bioavailability (48% in rats), A-216546 (10a) was selected as a potential clinical backup for 1.  相似文献   

4.
Previously we reported the discovery of amidothiophenesulfonamides as endothelin receptor-A antagonists with high potency and selectivity. Replacement of an amide group in this class of compounds with an acetyl group maintained the in vitro binding affinity and in vivo activity while providing a compound with oral bioavailability and longer duration of action. The optimal compound discovered during these studies, 15q (TBC11251), binds competitively to human ETA receptors with a Ki of 0.43 +/- 0.03 nM and an IC50 of 1.4 nM (IC50 for ETB = 9800 nM). This compound inhibits ET-1-induced stimulation of phosphoinositide turnover with a Ki of 0.686 nM and a pA2 of 8.0. The compound has a serum half-life in the rat and the dog of 6-7 h and 60-100% oral bioavailability. This compound is one of the most selective ETA antagonists reported and therefore is suitable for additional pharmacological and clinical investigation of the role of ETA receptors in diseases.  相似文献   

5.
An amidrazonophenylalanine derivative LB30057 (2) was identified as a potent (Ki = 0.38 nM), selective, and orally active thrombin inhibitor. As a continuation of studies into benzamidrazone-based thrombin inhibitors, we have structurally modified compound 2 by replacing the naphthyl group with a variety of hydrophobic moieties. This study led to discovery of several compounds with significantly enhanced potency in thrombin inhibition without sacrificing selectivity against trypsin and oral absorption. The highest activity was obtained with compound 23 (Ki = 0.045 nM).  相似文献   

6.
We have studied the effects of the enantiomers of 2-amino-3-(3-hydroxyisoxazol-5-yl)propionic acid (homoibotenic acid, HIBO) and analogues substituted with a methyl, bromo or butyl group in the four position of the ring at cloned metabotropic glutamate (mGlu) receptors expressed in Chinese hamster ovary (CHO) cells. In contrast to the parent compound ibotenic acid, which is a potent group I and II agonist, the (S)-forms of homoibotenic acid and its analogues are selective and potent group I antagonists whereas the (R)-forms are inactive both as agonists and antagonists at group I, II, and III mGlu receptors. Interestingly, (S)-homoibotenic acid and the analogues display equal potency at both mGlu1alpha and mGlu5a with Ki values in the range of 97 to 490 microM, (S)-homoibotenic acid and (S)-2-amino-3-(4-butyl-3-hydroxyisoxazol-5-yl)propionic acid [(S)-4-butylhomoibotenic acid] displaying the lowest and highest potency, respectively. The homoibotenic acid analogues thereby differ from mGlu receptor antagonists derived from phenylglycine such as (S)-4-carboxyphenylglycine which only antagonizes mGlu1alpha (Ki = 18 microM) showing no effect at mGlu5a (Ki > 300 microM).  相似文献   

7.
A series of 4-hydroxy-3-nitroquinolin-2(1H)-ones (HNQs) was synthesized by nitration of the corresponding 2,4-quinolinediols. The HNQs were evaluated as antagonists at the glycine site of NMDA receptors by inhibition of [3H]DCKA binding to rat brain membranes. Selected HNQs were also tested for functional antagonism by electrophysiological assays in Xenopus oocytes expressing either 1a/2C subunits of NMDA receptors or rat brain AMPA receptors. The structure-activity relationships (SAR) of HNQs showed that substitutions in the 5-, 6-, and 7-positions in general increase potency while substitutions in the 8-position cause a sharp reduction in potency. Among the HNQs tested, 5,6,7-trichloro HNQ (8i) was the most potent antagonist with an IC50 of 220 nM in [3H]DCKA binding assay and a Kb of 79 nM from electrophysiological assays. Measured under steady-state conditions HNQ 8i is 240-fold selective for NMDA over AMPA receptors. The SAR of HNQs was compared with those of 1,4-dihydroquinoxaline-2,3-diones (QXs) and 1,2,3,4-tetrahydroquinoline-2,3,4-trione 3-oximes (QTOs). In general, HNQs have similar potencies to QXs with the same benzene ring substitution pattern but are about 10 times less active than the corresponding QTOs. HNQs are more selective for NMDA receptors than the corresponding QXs and QTOs. The similarity of the SAR of HNQs, QXs, and QTOs suggested that these three classes of antagonists might bind to the glycine site in a similar manner. With appropriate substitutions, HNQs represent a new class of potent and highly selective NMDA receptor glycine site antagonists.  相似文献   

8.
RLH-033 [2-(4-phenylpiperidinyl)ethyl 1-(4-nitrophenyl)cyclopentanecarboxylate HCl] is a rationally designed ligand that was synthesized and evaluated for its binding affinities at sigma 1 and sigma 2 sites in guinea pig brain. RLH-033 has high affinity (Ki = 50 pM) for sigma 1 sites labeled by [3H](+)-pentazocine, while it was over 2000-fold less affinity at sigma 2 sites labeled by [3H]1,3-di(2-tolyl)guanidine (DTG) in the presence of 500 nM (+)-pentazocine (Ki = 105 nM). Unlike its potent sigma activity, the compound has little affinity for dopamine D1 (Ki = 2.9 microM), D2 (Ki = 0.35 microM), muscarinic M1 (Ki = 0.88 microM) or M2 (Ki = 1.7 microM) receptors, and none at all for N-methyl-D-aspartate, phencyclidine and opioid receptors. Thus, RLH-033 is the most potent sigma 1 ligand reported to date, and its very high affinity suggests it may be a useful radioligand to characterize the pharmacology of sigma 1 recognition sites.  相似文献   

9.
The 5-hydroxytryptamine (5-HT)1B/1D receptor subtypes are involved in the regulation of 5-HT release and have gained particular interest because of their apparent role in migraine. Although selective antagonists for both receptor subtypes recently have been developed, the receptor domains involved in the pharmacological specificity of these antagonists are defined poorly. This was investigated with a chimeric 5-HT1B/1D receptor analysis and using ketanserin as a selective antagonist of h5-HT1D (h5-HT1D) Ki = 24-27 nM) as opposed to h5-HT1B (Ki = 2193-2902 nM) receptors. A domain of the h5-HT1D receptor encompassing the second extracellular loop and the fifth transmembrane domain is necessary and sufficient to promote higher affinity binding (Ki = 65-115 nM) for ketanserin to the h5-HT1B receptor. The same domain of the h5-HT1B receptor, when exchanged in the h5-HT1D receptor, abolished high affinity binding of ketanserin (Ki = 364-1265 nM). A similar observation was made with the antagonist ritanserin and seems specific because besides the unmodified binding affinities for 5-HT and zolmitriptan, only minor modifications (2-4-fold) were observed for the agonists L 694247 and sumatriptan and the antagonists GR 127935 and SB 224289. Generating point mutations of divergent amino acids compared with the h5-HT1B receptor did not demonstrate a smaller peptide region related to a significant modification of ketanserin binding. The antagonists ketanserin and ritanserin are likely to bind the h5-HT1D receptor by its second extracellular loop, near the exofacial surface of the fifth transmembrane domain, or both.  相似文献   

10.
Recent studies demonstrated that peptide and antibody antagonists of integrin alpha v beta 3 block angiogenesis and tumor growth. In this article, the design, synthesis and biological evaluation of a series of nitroaryl ether-based, nonpeptide mimetics are described. The design of these compounds was based on Merck's arylether/alpha-aminoacid/guanidine framework and incorporates a novel nitroaryl system. The synthesized mimetics were tested against a variety of integrins (alpha v beta 3, alpha IIb beta 3, and alpha v beta 5) in order to determine their binding selectivity and ability to inhibit cell adhesion. Selected compounds were also tested for their ability to inhibit angiogenesis in vivo in the CAM (chick chorioallantoic membrane) assay. From the generated compound library, compounds 16 and 19 proved to be potent and selective inhibitors of alpha IIb beta 3 (IC50 = 14 nM) whereas compound 11 showed excellent in vivo inhibition of angiogenesis (at 30 micrograms/embryo).  相似文献   

11.
A series of analogs of the potent and selective 5-HT1A agonist 8-(di-n-propylamino)-6,7,8,9-tetrahydro-3H-benz[e]indole-1-carbaldehyde (2b) (OSU191) was prepared in which the dipropylamino group was modified to bear a variety of substituents. These compounds were evaluated for both in vitro and in vivo effects, including the establishment of a receptor binding profile for these analogs at the 5-HT1A, dopamine D-2, dopamine D-3, 5-HT1D alpha, and 5-HT1D beta sites. Several of the analogs were evaluated for their biochemical effects in reserpinized rats, specifically with regard to in vivo changes in brain levels of 5-HTP and DOPA. Nearly all of the compounds prepared for this study were exceedingly potent at the 5-HT1A receptor, although most also displayed significant affinity for the dopamine D-2 receptor. A strong preference for the 5-HT1D alpha over the 5-HT1D beta receptor was also apparent. An analog bearing a butylglutarimide side chain, S-7k, was extremely selective for the 5-HT1A receptor. Although this compound possessed a Ki of 0.6 nM, it elicited only modest changes in 5-HTP brain levels. However, this compound did not appear as an antagonist when tested in a cyclic-AMP-based intrinsic activity assay.  相似文献   

12.
A series of tropane derivatives, related in structure to baogongteng A (1), an alkaloid from a Chinese herb, were synthesized. 6beta-Acetoxynortropane (5) had weak affinity (Ki 22 microM) for central (M1) muscarinic receptors in a [3H]quinuclidinyl benzilate binding assay but had extremely high affinity (Ki 2.6 nM) and selectivity for M2-muscarinic receptors expressed in CHO cells. It had 13-fold lower affinity for M4-receptors, 260-fold lower affinity for M3-receptors, and 8200-fold lower affinity for M1-receptors expressed in CHO cells. The 6beta-carbomethoxy analogue (14) of baogongteng A had only weak affinity for M2-muscarinic receptors, as did 6beta-carbomethoxynortropane (13) and 6beta-acetoxytropane (4). In transfected CHO cells, 6beta-acetoxynortropane (5) was an agonist at M2-receptors, based on a GTP-elicited decrease in affinity, and a full agonist with an IC50 of 11 nM at M4-receptors, based on inhibition of cyclic AMP accumulation, while being a full agonist at M1-receptors with an EC50 of 23 nM and a partial agonist at M3-receptors with an EC50 of 3.6 nM, based in both cases on stimulation of phosphoinositide breakdown. All of the 16 tropane derivatives had weak affinities for central alpha4beta2-nicotinic receptors with 6beta-carbomethoxynortropane (13) having the highest affinity, which was still 150-fold less than that of nicotine. 6beta-Acetoxynortropane (5) represents a potent muscarinic agonist with apparent selectivity toward M2-receptors.  相似文献   

13.
The pharmacological properties of a novel selective 5-hydroxytryptamine1A (5-HT1A) receptor antagonist, NAD-299 [(R)-3-N,N-dicyclobutylamino-8-fluoro-3,4-dihydro-2H-1-benzopyran-5-carboxamide hydrogen (2R,3R)-tartrate monohydrate] were examined in vitro and in vivo and compared with the reference 5-HT1A receptor antagonist, WAY-100635 [N-(2-(1-(4-(2-methoxyphenyl)piperazin-yl))ethyl)-N-(2-pyridinyl) cyclohexanecarboxamide trihydrochloride]. The new compound had high affinity for 5-HT1A receptors in vitro with a Ki value of 0.6 nM. The only other receptors for which NAD-299 had affinity less than 1 microM were alpha-1 and beta adrenoceptors with Ki values of 260 and 340 nM, respectively. Thus, the selectivity of NAD-299 for 5-HT1A receptors was more than 400 times. WAY-100635 had considerably higher affinity than NAD-299 for alpha-1 adrenoceptors (Ki = 45 nM) and dopamine D2 and D3 receptors (Ki = 79 and 67 nM, respectively). Like WAY-100635, NAD-299 competitively blocked 5-HT-induced inhibition of vasoactive intestinal peptide-stimulated cAMP production in GH4ZD10 cells and had no intrinsic activity. Both compounds were therefore 5-HT1A receptor antagonists in vitro and also behaved as such in in vivo experiments. Thus, they competitively antagonized the 8-hydroxy-2-(di-n-propylamino)tetralin-induced 5-HT behavioral effects, hypothermia, corticosterone secretion and inhibition of passive avoidance behavior without causing any actions of their own. The effective dose of NAD-299 varied between 0.03 and 0.35 micromol/kg s.c., depending on the test and the dose of 8-hydroxy-2-(di-n-propylamino)tetralin.  相似文献   

14.
Among the recently reported 2-(ar)alkynyl derivatives of 5'-N-ethylcarboxamidoadenosine (NECA), the (R,S)-2-(3-hydroxy-3-phenyl-1-propyn-1-yl)NECA [(R,S)-PHPNECA or SCH 59761] was found to be a very potent agonist at A1 and A2A receptor subtypes, with a Ki of 2.5 nM and 0.9 nM, respectively. Furthermore, this compound showed an inhibitory activity on platelet aggregation 16-fold higher than NECA, being the most potent anti-aggregatory nucleoside reported so far. Since this compound bears a chiral carbon in the side chain, the diastereoisomer separation was undertaken both by chiral HPLC and by a stereospecific synthetic method. Binding assays have shown that the (S)-diastereomer is about fivefold more potent and selective than the (R)-diastereomer as agonist of the A2A receptor subtype [(S)-PHPNECA, KiA2A = 0.5 nM; (R)-PHPNECA, KiA2A = 2.6 nM]. Functional studies indicated that (S)-PHPNECA possesses marked vasodilating activity and produces a relevant decrease in heart rate. Moreover, the (S)-diastereomer proved to be about ten times more potent than the (R)-diastereomer in inducing cardiovascular effects, in in vivo hemodynamic studies. However, the greatest difference between these two enantiomers resulted in the platelet aggregation test: in fact, the (R)-diastereomer displayed an inhibitory activity similar to that of NECA, whereas the (S)-diastereomer was 37-fold more active than NECA as an inhibitor of rabbit platelet aggregation, induced by ADP. These data suggest that (S)-PHPNECA could be a useful tool to investigate the mode of binding of agonists to the platelet adenosine receptor subtype.  相似文献   

15.
The platelet P2T receptor plays a major role in platelet aggregation, and its antagonists are predicted to have significant therapeutic potential as antithrombotic agents. We have explored analogues of adenosine triphosphate (ATP), which is a weak, nonselective but competitive P2T receptor antagonist. Modification of the polyphosphate side chain to prevent breakdown to the agonist adenosine diphosphate (ADP) and substitution of the adenine moiety to enhance affinity and selectivity for the P2T receptor led to the identification of 10e (AR-C67085MX), having an IC50 of 2.5 nM against ADP-induced aggregation of human platelets. Compound 10e was the first very potent antagonist of the P2T receptor, with a selectivity for that subtype of the P2 receptor family of >1000-fold. Further modification of the structure produced compound 10l (AR-C69931MX) having an IC50 of 0.4 nM. In vivo, at maximally effective antithrombotic doses, there is little prolongation of bleeding time (1.4-fold), which is in marked contrast to the 5-6-fold found with GPIIb/IIIa antagonists.  相似文献   

16.
New constrained cyclic pseudopeptide cholecystokinin-B (CCK-B) agonists have been designed on the basis of conformational characteristics of the potent and selective CCK-B agonist Boc-Trp-(NMe)Nle-Asp-Phe-NH2 (Ki = 0.8 nM, selectivity ratio CCK-A/CCK-B > 6000) (Goudreau et al. Biopolymers, 1994, 34, 155-169). These compounds are among the first successful examples of macrocyclic constrained CCK4 analogs endowed with agonist properties and as such may be of value for the development of nonpeptide CCK-B agonists. The affinities and selectivities of these compounds for CCK-B and CCK-A receptors have been determined in vitro by measuring the displacement of [3H]pCCK8 binding to guinea pig cortex and pancreas membranes, respectively. The most potent compound, 8b, N-(cycloamido)-alpha-Me(R)Trp-[(2S)-2-amino-9- ((cycloamido)carbonyl)nonanoyl]-Asp-Phe-NH2, has a Ki value of 15 +/- 1 nM for guinea pig cortex membranes with a good CCK-B selectivity ratio (CCK-A/CCK-B = 147). Furthermore, 8b behaved as a potent and full agonist in a functional assay which measures the stimulation of inositol phosphate accumulation in CHO cells transfected with the rat CCK-B receptor (EC50 = 7 nM). The in vivo affinity of 8b for mouse brain CCK-B receptors was determined following intracerebroventricular injection (ID50 approximately 29 nmol/kg). 8b was also shown to cross the blood-brain barrier (0.16%), after intravenous administration in mice. 8b also increased gastric acid secretion measured in anesthetized rats after intravenous injection. Therefore, 8b appears to be an interesting pharmacological tool and is currently under investigation as a lead for further development of nonpeptide CCK-B agonists.  相似文献   

17.
A-131701 (3-[2-((3aR,9bR)-cis-6-methoxy-2,3,3a,4,5,9b, hexahydro-[1H]-benz[e]isoindol-2-yl)ethyl]pyrido [3',4': 4,5]thieno[3,2-d]pyrimidine-2,4(1H,3H)-dione) is a novel compound previously shown to be selective for alpha-1a sites compared with alpha-1b adrenoceptors in radioligand binding studies and isolated tissue bioassays and to block canine urethral pressure (IUP) responses to exogenous alpha-1 adrenergic agonists to a greater extent than blood pressure responses. In conscious dogs in which IUP and mean arterial blood pressure (MABP) responses were measured periodically up to 24 hr, A-131701 blocked phenylephrine (PHE)-induced increases in IUP to a greater extent than MABP responses, and the blockade of the IUP effects of PHE was significantly different from control for up to 12 hr after doses greater than 0.3 mg/kg p.o., whereas blood pressure effects were of a lesser extent and duration. In addition to the weak antagonism of PHE-induced blood pressure responses, A-131701 also exhibited minimal effects on basal blood pressure in the dog, unlike terazosin, doxazosin or tamsulosin. Pharmacokinetic analysis of plasma samples from dogs indicated that A-131701 had a half-life of 0.4 to 0.8 hr and a bioavailability of 30 to 50% in dogs. Somewhat longer half-lives were observed in rat and monkey, with bioavailability values in the 25 to 30% range. Evidence of nonlinearity of pharmacokinetics was obtained in dogs and monkeys. Pharmacodynamic analysis revealed differences between A-131701 and nonselective alpha-1 adrenoceptor antagonists in selectivity for prostatic versus vascular alpha-1 adrenoceptors based on either extent or duration of blockade, which were either similar to or superior to compounds such as tamsulosin or REC 15/2739. These data demonstrate that A-131701 selectively blocks canine prostatic alpha-1 adrenoceptors for prolonged periods compared with MABP responses in vivo. Therefore, A-131701 should have clinical utility in the pharmacotherapy of benign prostatic hyperplasia.  相似文献   

18.
The 5-hydroxytryptamine(HT)3 receptor subtype is present in the central nervous system (CNS) in low abundance, and few selective radiolabeled antagonists with high specific activity are available to study these sites. DAIZAC [desamino-3-iodo-(S)-zacopride; (S)-5-chloro-3-iodo-2-methoxy-N-(1-azobicyclo-[2.2. 2]oct-3-yl)benzamide] is a compound with high affinity and selectivity for the 5-HT3 receptor. Scatchard analysis of specific binding to NCB-20 cell membranes gave a Bmax of 340 +/- 58 fmol/mg protein and a KD of 0.14 +/- 0.03 nM, which is in agreement with the value previously reported in rat brain (KD = 0.15 nM). Nonspecific binding of [125I]DAIZAC in NCB-20 cells was <1% of total binding at the KD for DAIZAC compared with 17% in the rat brain preparation. Unlabeled DAIZAC (10 microM) showed minimal ability to displace binding of radiolabeled ligands selected for their affinities for other CNS receptor and uptake carrier binding sites. The discrimination ratio of DAIZAC for the 5-HT3 receptor over the M1 muscarinic binding site, the non-5-HT3 site at which it was most potent, was >2800. Serotonergic antagonists at every other known CNS serotonergic binding sites (3-30 microM) were ineffective in displacing [125I]DAIZAC binding in rat brain membranes. Similarly, antagonists (3-30 microM) for other nonserotonergic receptors and uptake sites were ineffective in displacing [125I]DAIZAC binding. Autoradiographic studies showed highest specific binding in area postrema and nucleus solitarius, with intermediate levels of binding in entorhinal cortex and hippocampus. DAIZAC inhibited 5-HT3 receptor-mediated inward cation current in NCB-20 cells with an IC50 of 0.24 nM. [125I]DAIZAC is a potent and highly selective ligand for in vitro studies of the 5-HT3 receptor.  相似文献   

19.
20.
We have discovered two substituted 4-aminopiperidine compounds having high in vitro affinity and selectivity for the human dopamine D1 receptor. Both compounds, 3-ethoxy-N-methyl-N-[1-(phenylmethyl)-4-piperidinyl]-2-pyridinylamine (U-99363E), and its 3-isopropoxy analog (U-101958), were found through a routine receptor binding screen. The determined affinities (Ki) of these compounds for the cloned human dopamine D4 receptor were 2.2 and 1.4 nM, respectively. They exhibited at least 100-fold lower affinities for dopamine D2 and for other dopaminergic, serotonergic and adrenergic receptors. Both compounds were found to antagonize quinpirole-induced mitogenesis in Chinese hamster ovary cells expressing the human dopamine D4 receptor. In spite of their poor metabolic stability and low bioavailability. U-99363E and U-101958 appear to be among the first high-affinity, highly selective dopamine D4 receptor antagonists reported, and may have utility in in vitro investigations requiring selective tagging or blockade of dopamine D4 sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号