首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism by which glucose stimulates insulin secretion from the pancreatic islets of Langerhans is incompletely understood. It has been suggested that malonyl-CoA plays a regulatory role by inhibiting fatty acid oxidation and promoting accumulation of cytosolic long-chain acyl-CoA (LC-CoA). In the current study, we have re-evaluated this "long-chain acyl-CoA hypothesis" by using molecular and pharmacologic methods to perturb lipid metabolism in INS-1 insulinoma cells or rat islets during glucose stimulation. First, we constructed a recombinant adenovirus containing the cDNA encoding malonyl-CoA decarboxylase (AdCMV-MCD), an enzyme that decarboxylates malonyl-CoA to acetyl-CoA. INS-1 cells treated with AdCMV-MCD had dramatically lowered intracellular malonyl CoA levels compared with AdCMV-betaGal-treated cells at both 3 and 20 mM glucose. Further, at 20 mM glucose, AdCMV-MCD-treated cells were less effective at suppressing [1-14C]palmitate oxidation and incorporated 43% less labeled palmitate and 50% less labeled glucose into cellular lipids than either AdCMV-betaGAL-treated or untreated INS-1 cells. Despite the large metabolic changes caused by expression of MCD, insulin secretion in response to glucose was unaltered relative to controls. The alternative, pharmacologic approach for perturbing lipid metabolism was to use triacsin C to inhibit long-chain acyl-CoA synthetase. This agent caused potent attenuation of palmitate oxidation and glucose or palmitate incorporation into cellular lipids and also caused a 47% decrease in total LC-CoA. Despite this, the drug had no effect on glucose-stimulated insulin secretion in islets or INS-1 cells. We conclude that significant disruption of the link between glucose and lipid metabolism does not impair glucose-stimulated insulin secretion in pancreatic islets or INS-1 cells.  相似文献   

2.
We studied the effects of fatty acid oxidation on insulin secretion of db/db mice and underlying molecular mechanisms of these effects. At 2-3 months of age, db/db mice were markedly obese, hyperglycemic, and hyperinsulinemic. Serum free fatty acid (FFA) levels were increased in 2-month-old (1.5 +/- 0.1 vs. 1.1 +/- 0.1 mmol/l, P < 0.05) and 3-month-old (1.9 +/- 0.1 vs. 1.2 +/- 0.1 mmol/l, P < 0.01) mice compared with the age and sex-matched db/+ mice serving as controls. Glucose-induced insulin release from db/db islets was markedly decreased compared with that from db/+ islets and was specifically ameliorated (by 54% in 2-month-old and 38% in 3-month-old mice) by exposure to a carnitine palmitoyltransferase I inhibitor, etomoxir (1 micromol/l). Etomoxir failed to affect the insulin response to alpha-ketoisocaproate. The effect of etomoxir on glucose-induced insulin release was lost after culturing db/db islets in RPMI medium containing 22 mmol/l glucose but no fatty acid. Culture of db/+ islets with 0.125 mmol/l palmitate led to a decrease in glucose-induced insulin secretion, which was partially reversible by etomoxir. Both islet glucose oxidation and the ratio of glucose oxidation to utilization were decreased in db/db islets. Etomoxir significantly enhanced glucose oxidation by 60% and also the ratio of oxidation to glucose utilization (from 27 +/- 2.5 to 37 +/-3.0%, P < 0.05). Pyruvate dehydrogenase (PDH) activity was decreased in islets of db/db mice (75 +/-4.2 vs. 91 +/- 2.9 nU/ng DNA, P < 0.01), whereas PDH kinase activity was increased (rate of PDH inactivation -0.25 +/- 0.02 vs. - 0.11 +/- 0.02/min, P < 0.0 1). These abnormalities were partly but not wholly reversed by a 2-h preexposure to etomoxir. In conclusion, elevated FFA levels in the db/db mouse diminish glucose-induced insulin secretion by a glucose-fatty acid cycle in which fatty acid oxidation inhibits glucose oxidation by decreasing PDH activity and increasing PDH kinase activities.  相似文献   

3.
Insulin secretion from beta cells in the islets of Langerhans can be stimulated by a number of metabolic fuels, including glucose and glyceraldehyde, and is thought to be mediated by metabolism of the secretagogues and an attendant increase in the ATP:ADP ratio. Curiously, glycerol fails to stimulate insulin secretion, even though it has been reported that islets contain abundant glycerol kinase activity and oxidize glycerol efficiently. We have reinvestigated this point and find that rat islets and the well differentiated insulinoma cell line INS-1 contain negligible glycerol kinase activity. A recombinant adenovirus containing the bacterial glycerol kinase gene (AdCMV-GlpK) was constructed and used to express the enzyme in islets and INS-1 cells, resulting in insulin secretion in response to glycerol. In AdCMV-GlpK-treated INS-1 cells a greater proportion of glycerol is converted to lactate and a lesser proportion is oxidized compared with glucose. The two fuels are equally potent as insulin secretagogues, despite the fact that oxidation of glycerol at its maximally effective dose (2-5 mM) occurs at a rate that is similar to the rate of glucose oxidation at its basal, nonstimulatory concentration (3 mM). We also investigated the possibility that glycerol may signal via expansion of the glycerol phosphate pool to allow enhanced fatty acid esterification and formation of complex lipids. Addition of Triacsin-C, an inhibitor of long-chain acyl-CoA synthetase, to AdCMV-GlpK-treated INS-1 cells did not inhibit glycerol-stimulated insulin secretion despite the fact that it blocked glycerol incorporation into cellular lipids. We conclude from these studies that glycerol kinase expression is sufficient to activate glycerol signaling in beta cells, showing that the failure of normal islets to respond to this substrate is due to a lack of this enzyme activity. Further, our studies show that glycerol signaling is not linked to esterification or oxidation of the substrate, but is likely mediated by its metabolism in the glycerol phosphate shuttle and/or the distal portion of the glycolytic pathway, either of which can lead to production of ATP and an increased ATP:ADP ratio.  相似文献   

4.
We asked whether the well known starvation-induced impairment of glucose-stimulated insulin secretion (GSIS) seen in isolated rat pancreas preparations also applies in vivo. Accordingly, fed and 18-24-h-fasted rats were subjected to an intravenous glucose challenge followed by a hyperglycemic clamp protocol, during which the plasma-insulin concentration was measured. Surprisingly, the acute (5 min) insulin response was equally robust in the two groups. However, after infusion of the antilipolytic agent, nicotinic acid, to ensure low levels of plasma FFA before the glucose load, GSIS was essentially ablated in fasted rats, but unaffected in fed animals. Maintenance of a high plasma FFA concentration by coadministration of Intralipid plus heparin to nicotinic acid-treated rats (fed or fasted), or further elevation of the endogenous FFA level in nonnicotinic acid-treated fasted animals by infusion of etomoxir (to block hepatic fatty acid oxidation), resulted in supranormal GSIS. The in vivo findings were reproduced in studies with the perfused pancreas from fed and fasted rats in which GSIS was examined in the absence and presence of palmitate. The results establish that in the rat, the high circulating concentration of FFA that accompanies food deprivation is a sine qua non for efficient GSIS when a fast is terminated. They also serve to underscore the powerful interaction between glucose and fatty acids in normal beta cell function and raise the possibility that imbalances between the two fuels in vivo could have pathological consequences.  相似文献   

5.
We studied the influence of Etomoxir on fat and carbohydrate oxidation, and the influence of these changes on insulin sensitivity in type 2 diabetic patients. Etomoxir is an oxirane carboxylic acid derivative that specifically inactivates carnitine-acyltransferase I (CAT I, EC: 2.3.1.21), the key enzyme for the transport of long-chain acyl-CoA compounds into the mitochondria. Thus, oxidation of fatty acids should be reduced by this drug and glucose utilisation be increased according to the Randle mechanism. In order to test this hypothesis, we measured oxidative and non-oxidative glucose utilisation using the euglycaemic hyperinsulinaemic clamp technique, the isotope dilution mass spectrometry (IDMS) method with stable isotopes (6,6-D2-glucose) and indirect calorimetry. The clamps lasted 5 hours, indirect calorimetry was performed during the last hour and calculations of glucose disposal were based on steady state conditions during the last 30 minutes. Twelve type 2 diabetic patients were treated with 100 mg etomoxir/per day for 3 days in this placebo-controlled, randomized, double-blind study. Treatment resulted in a significant increase in carbohydrate oxidation (from 72 to 113 g/24 h, p = 0.039), decrease in fat oxidation (from 139 to 114 g/24 h, p = 0.037), and decrease of the glucose appearance rate (RA) in the basal state (from 1.85 to 1.70 mg/kg min., p = 0.014). During the euglycaemic clamp neither RA (3.30 and 3.20 mg/kg min., p = 0.471) nor the glucose infusion rate (4.28 and 4.53 mg/kg min., p = 0.125) showed significant changes. In addition, no significant changes in glucose and fat oxidation were detected during the hyperinsulinaemic clamp. Under basal conditions non-oxidative glucose utilisation was decreased by etomoxir (1.26 and 0.80 mg/ kg x min). Thus, we could demonstrate a decrease in fat and increase in glucose oxidation by etomoxir, but non-oxidative glucose utilisation was decreased. No significant changes could be demonstrated under clamp conditions.  相似文献   

6.
5-Aminoimidazole-4-carboxamide 1-beta-D-ribofuranoside (AICAR) is taken up by perfused skeletal muscle and phosphorylated to form 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuraosyl-5'-monopho sph ate (analog of 5'-AMP) with consequent activation of AMP-activated protein kinase, phosphorylation of acetyl-CoA carboxylase, decrease in malonyl-CoA, and increase in fatty acid oxidation. This study was designed to determine the effect of increasing levels of palmitate on the rate of fatty acid oxidation. Malonyl-CoA concentration was manipulated with AICAR at different palmitate concentrations. Rat hindlimbs were perfused with Krebs-Henseleit bicarbonate containing 4% bovine serum albumin, washed bovine red cells, 200 microU/ml insulin, 10 mM glucose, and different concentrations of palmitate (0. 1-1.0 mM) without or with AICAR (2.0 mM). Perfusion with medium containing AICAR was found to activate AMP-activated protein kinase in skeletal muscle, inactivate acetyl-CoA carboxylase, and decrease malonyl-CoA at all concentrations of palmitate. The rate of palmitate oxidation increased as a function of palmitate concentration in both the presence and absence of AICAR but was always higher in the presence of AICAR. These results provide additional evidence that malonyl-CoA is an important regulator of the rate of fatty acid oxidation at palmitate concentrations in the physiological range.  相似文献   

7.
The aim of this work was to simultaneously study the secretion of islet amyloid polypeptide (IAPP) and insulin from isolated rat pancreatic islets in vitro. For examination of stimulated beta-cells, nutrient secretagogues (16.7 mM glucose, 10 mM leucine + 2 mM glutamine), phosphodiesterase inhibition (5 mM theophylline), a sulphonylurea (0.5 microgram/ml glipizide), a non-nutrient amino acid (10 mM arginine), cholinergic stimulation (0.1 mM carbamylcholine) and insulinotropic peptides (0.1 microM vasoactive intestinal polypeptide and 0.1 microM glucagon), were used. For beta-cell suppression glucose phosphorylation inhibition (10 mM mannoheptulose), depletion of extracellular calcium, activation of the ATP-regulated K(+)-channel (0.5 mM diazoxide), adrenoreceptor stimulation (3 microM adrenaline), paracrine modulation (0.1 microM somatostatin), short-term treatment with a selective beta-cytotoxin (1.1 and 2.2 mM streptozotocin) and long-term treatment with a cytokine (25 U/ml interleukin-1 beta), were studied. The compounds with known effects on insulin secretion exerted their expected actions and this was paralleled by similar relative changes, with a possible exception for glucagon, in the IAPP secretion. The ratio of IAPP/insulin released did not change significantly under any of the tested experimental conditions, except for a slight increase following carbamylcholine stimulation. On a molar basis approx. 1% of IAPP was released when compared with insulin. These results are consistent with the hypothesis that the regulation of IAPP secretion from beta-cells of isolated rat pancreatic islets is essentially regulated by the same mechanisms as insulin secretion.  相似文献   

8.
Glut-2 is a low-affinity transporter present in the plasma membrane of pancreatic beta-cells, hepatocytes and intestine and kidney absorptive epithelial cells of mice. In beta-cells, Glut-2 has been proposed to be active in the control of glucose-stimulated insulin secretion (GSIS; ref. 2), and its expression is strongly reduced in glucose-unresponsive islets from different animal models of diabetes. However, recent investigations have yielded conflicting data on the possible role of Glut-2 in GSIS. Whereas some reports have supported a specific role for Glut-2 (refs 5,6), others have suggested that GSIS could proceed normally even in the presence of low or almost undetectable levels of this transporter. Here we show that homozygous, but not heterozygous, mice deficient in Glut-2 are hyperglycaemic and relatively hypo-insulinaemic and have elevated plasma levels of glucagon, free fatty acids and beta-hydroxybutyrate. In vivo, their glucose tolerance is abnormal. In vitro, beta-cells display loss of control of insulin gene expression by glucose and impaired GSIS with a loss of first phase but preserved second phase of secretion, while the secretory response to non-glucidic nutrients or to D-glyceraldehyde is normal. This is accompanied by alterations in the postnatal development of pancreatic islets, evidenced by an inversion of the alpha- to beta-cell ratio. Glut-2 is thus required to maintain normal glucose homeostasis and normal function and development of the endocrine pancreas. Its absence leads to symptoms characteristic of non-insulin-dependent diabetes mellitus.  相似文献   

9.
The effects of leptin on insulin secretion from pancreatic islets of Sprague-Dawley rats were examined in vitro. In a basal glucose medium (5.5 mM), insulin secretion from isolated islets was significantly decreased after addition of a recombinant leptin (80 nM) (3.20+/-0.14 nmol/10 islets/h) compared with that before the addition (4.41+/-0.30 nmol/10 islets/h). Although significant leptin suppression of insulin secretion was not observed under a glucose-stimulated (11.1 mM) condition, these results suggest that a negative feedback system may exist between leptin and insulin, which increases the production of leptin from adipose tissues.  相似文献   

10.
11.
Prostaglandin E2 levels in isolated rat islets were increased from 64 +/- 11 pg/30 islets when incubated in medium containing 2 mM glucose to 115 +/- 9 pg/30 islets in medium containing 20 mM glucose. In contrast, glyceraldehyde (10 mM) reduced prostaglandin E2 levels to 29 +/- 6 pg/30 islets. Inhibition of glucose metabolism by mannoheptulose (10 mM) abolished the stimulatory effect of glucose on prostaglandin E2 levels and inhibited glucose-induced insulin release. The cyclooxygenase inhibitor, flurbiprofen (20 microM), did not affect insulin release caused by glucose or glyceraldehyde. In the presence of 1 mg/ml bovine serum albumin, insulin secretion induced by 20 mM glucose (6.9 +/- 1.1% of islet insulin content) was reduced by the lipoxygenase inhibitor BW755 C (20 microM) to 3.1 +/- 0.6%, and by the phospholipase A2 inhibitor, p-bromophenacyl bromide (10 microM), to 2.1 +/- 0.8%. In the absence of bovine serum albumin the inhibitory action of BW755 C and p-bromophenacyl bromide on glucose-induced insulin release was significantly more pronounced. These drugs whether in the presence or absence of bovine serum albumin, did not affect glyceraldehyde-stimulated insulin secretion. Glyceraldehyde (10 mM), potentiated glucose-induced insulin release in the presence of 2-8 mM glucose, but not for 10-20 mM glucose. Although the phospholipase A2 activator, melittin, initiated insulin release in the presence of 2 mM glucose and enhanced 10 mM glyceraldehyde-stimulated insulin secretion it had no effect on 20 mM glucose-induced insulin release. These two stimulatory effects of melittin on insulin release were totally abolished by p-bromophenacyl bromide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
To elucidate cellular mechanisms of insulin resistance induced by excess dietary fat, we studied conscious chronically high-fat-fed (HFF) and control chow diet-fed rats during euglycemic-hyperinsulinemic (560 pmol/l plasma insulin) clamps. Compared with chow diet feeding, fat feeding significantly impaired insulin action (reduced whole body glucose disposal rate, reduced skeletal muscle glucose metabolism, and decreased insulin suppressibility of hepatic glucose production [HGP]). In HFF rats, hyperinsulinemia significantly suppressed circulating free fatty acids but not the intracellular availability of fatty acid in skeletal muscle (long chain fatty acyl-CoA esters remained at 230% above control levels). In HFF animals, acute blockade of beta-oxidation using etomoxir increased insulin-stimulated muscle glucose uptake, via a selective increase in the component directed to glycolysis, but did not reverse the defect in net glycogen synthesis or glycogen synthase. In clamp HFF animals, etomoxir did not significantly alter the reduced ability of insulin to suppress HGP, but induced substantial depletion of hepatic glycogen content. This implied that gluconeogenesis was reduced by inhibition of hepatic fatty acid oxidation and that an alternative mechanism was involved in the elevated HGP in HFF rats. Evidence was then obtained suggesting that this involves a reduction in hepatic glucokinase (GK) activity and an inability of insulin to acutely lower glucose-6-phosphatase (G-6-Pase) activity. Overall, a 76% increase in the activity ratio G-6-Pase/GK was observed, which would favor net hepatic glucose release and elevated HGP in HFF rats. Thus in the insulin-resistant HFF rat 1) acute hyperinsulinemia fails to quench elevated muscle and liver lipid availability, 2) elevated lipid oxidation opposes insulin stimulation of muscle glucose oxidation (perhaps via the glucose-fatty acid cycle) and suppression of hepatic gluconeogenesis, and 3) mechanisms of impaired insulin-stimulated glucose storage and HGP suppressibility are not dependent on concomitant lipid oxidation; in the case of HGP we provide evidence for pivotal involvement of G-6-Pase and GK in the regulation of HGP by insulin, independent of the glucose source.  相似文献   

13.
14.
Previous work suggested that glucagon-like peptide 1 (GLP-1) can acutely regulate insulin secretion in two ways, 1) by acting as an incretin, causing amplification of glucose-induced insulin release when glucose is given orally as opposed to intravenous glucose injection; and 2) by keeping the beta-cell population in a glucose-competent state. The observation that mice with homozygous disruption of the GLP-1 receptor gene are diabetic with a diminished incretin response to glucose underlines the first function in vivo. Isolated islets of Langerhans from GLP-1 receptor -/- mice were studied to assess the second function in vitro. Absence of pancreatic GLP-1 receptor function was observed in GLP-1 receptor -/- mice, as exemplified by loss of [125I]GLP-1 binding to pancreatic islets in situ and by the lack of GLP-1 potentiation of glucose-induced insulin secretion from perifused islets. Acute glucose competence of the beta-cells, assessed by perifusing islets with stepwise increases of the medium glucose concentration, was well preserved in GLP-1 receptor -/- islets in terms of insulin secretion. Furthermore, neither islet nor total pancreatic insulin content was significantly changed in the GLP-1 receptor -/- mice when compared with age-and sex-matched controls. In conclusion, mouse islets exhibit preserved insulin storage capacity and glucose-dependent insulin secretion despite the loss of functional GLP-1 receptors. The results demonstrate that the glucose responsiveness of islet beta-cells is well preserved in the absence of GLP-1 receptor signaling.  相似文献   

15.
The high-Km glucose transporter, GLUT-2, and the high-Km hexokinase of beta cells, glucokinase (GK), are required for glucose-stimulated insulin secretion (GSIS). GLUT-2 expression in beta cells of Zucker diabetic fatty (ZDF) rats is profoundly reduced at the onset of beta-cell dysfunction of diabetes. Because ZDF rats are homozygous for a mutation in their leptin receptor (OB-R) gene and are therefore leptin-insensitive, we expressed the wild-type OB-R gene in diabetic islets by infusing a recombinant adenovirus (AdCMV-OB-Rb) to determine whether this reversed the abnormalities. Leptin induced a rise in phosphorylated STAT3, indicating that the transferred wild-type OB-R was functional. GLUT-2 protein rose 17-fold in AdCMV-OB-Rb-treated ZDF islets without leptin, and leptin caused no further rise. GK protein rose 7-fold without and 12-fold with leptin. Preproinsulin mRNA increased 64% without leptin and rose no further with leptin, but leptin was required to restore GSIS. Clofibrate and 9-cis-retinoic acid, the partner ligands for binding to peroxisome proliferator-activator receptor alpha (PPARalpha) and retinoid X receptor, up-regulated GLUT-2 expression in islets of normal rats, but not in ZDF rats, in which PPARalpha is very low. Because the fat content of islets of diabetic ZDF rats remains high unless they are treated with leptin, it appears that restoration of GSIS requires normalization of intracellular nutrient homeostasis, whereas up-regulation of GLUT-2 and GK is leptin-independent, requiring only high expression of OB-Rb.  相似文献   

16.
17.
We studied the synergistic effect of glucose and prolactin (PRL) on insulin secretion and GLUT2 expression in cultured neonatal rat islets. After 7 days in culture, basal insulin secretion (2.8 mM glucose) was similar in control and PRL-treated islets (1.84 +/- 0.06% and 2.08 +/- 0.07% of the islet insulin content, respectively). At 5.6 and 22 mM glucose, insulin secretion was significantly higher in PRL-treated than in control islets, achieving 1.38 +/- 0.15% and 3.09 +/- 0.21% of the islet insulin content in control and 2.43 +/- 0.16% and 4.31 +/- 0.24% of the islet insulin content in PRL-treated islets, respectively. The expression of the glucose transporter GLUT2 in B-cell membranes was dose-dependently increased by exposure of the islet to increasing glucose concentrations. This effect was potentiated in islets cultured for 7 days in the presence of 2 micrograms/ml PRL. At 5.6 and 10 mM glucose, the increase in GLUT2 expression in PRL-treated islets was 75% and 150% higher than that registered in the respective control. The data presented here indicate that insulin secretion, induced by different concentrations of glucose, correlates well with the expression of the B-cell-specific glucose transporter GLUT2 in pancreatic islets.  相似文献   

18.
The effect of exendin-(9-39), a described antagonist of the glucagon-like peptide-1 (GLP-1) receptor, was evaluated on the formation of cAMP- and glucose-stimulated insulin secretion (GSIS) by the conditionally immortalized murine betaTC-Tet cells. These cells have a basal intracellular cAMP level that can be increased by GLP-1 with an EC50 of approximately 1 nM and can be decreased dose dependently by exendin-(9-39). This latter effect was receptor dependent, as a beta-cell line not expressing the GLP-1 receptor was not affected by exendin-(9-39). It was also not due to the endogenous production of GLP-1, because this effect was observed in the absence of detectable preproglucagon messenger RNA levels and radioimmunoassayable GLP-1. Importantly, GSIS was shown to be sensitive to this basal level of cAMP, as perifusion of betaTC-Tet cells in the presence of exendin-(9-39) strongly reduced insulin secretion. This reduction of GSIS, however, was observed only with growth-arrested, not proliferating, betaTC-Tet cells; it was also seen with nontransformed mouse beta-cells perifused in similar conditions. These data therefore demonstrated that 1) exendin-(9-39) is an inverse agonist of the murine GLP-1 receptor; 2) the decreased basal cAMP levels induced by this peptide inhibit the secretory response of betaTC-Tet cells and mouse pancreatic islets to glucose; 3) as this effect was observed only with growth-arrested cells, this indicates that the mechanism by which cAMP leads to potentiation of insulin secretion is different in proliferating and growth-arrested cells; and 4) the presence of the GLP-1 receptor, even in the absence of bound peptide, is important for maintaining elevated intracellular cAMP levels and, therefore, the glucose competence of the beta-cells.  相似文献   

19.
The present study was undertaken to test the hypothesis that exposure to high glucose concentrations enhances insulin secretion in pancreatic islets from glucokinase-deficient mice. Insulin secretion and intracellular calcium ([Ca2+]i) were measured as the glucose concentration was increased from 2 to 26 mmol/l in islets from heterozygous glucokinase (GK)-deficient mice (GK+/-) and their wild-type littermates (GK+/+). Results obtained in islets incubated in 11.6 or 30 mmol/l glucose for 48-96 h were compared. GK+/- islets that had been incubated in 30 mmol/l glucose showed improved although not normal insulin secretory and [Ca2+]i responses to the standard glucose challenge as well as an enhanced ability to sense small amplitude glucose oscillations. These effects were associated with increased glucokinase activity and protein. In contrast, exposure of GK+/+ islets to 30 mmol/l glucose increased their basal insulin secretion but reduced their incremental secretory responses to glucose and their ability to detect small amplitude glucose oscillations. Thus exposure of GK+/- islets to 30 mmol/l glucose for 48-96 h enhanced their ability to sense and respond to a glucose stimulus, whereas similar exposure of GK+/+ islets induced evidence of beta-cell dysfunction. These findings provide a mechanistic framework for understanding why glucokinase diabetes results in mild hyperglycemia that tends not to increase over time. In addition, the absence of one allele of the glucokinase gene appears to protect against glucose-induced beta-cell dysfunction (glucose toxicity).  相似文献   

20.
The modality of the insulinotropic action of 1,1-dimethyl-2-[2-morpholinophenyl]guanidine fumarate (BTS 67 582), a new antidiabetic agent, was investigated in rat pancreatic islets. At a 0.1 mM concentration, which was sufficient to cause a close-to-maximal secretory response, BTS 67 582 failed to affect the utilization and oxidation of exogenous D-glucose, but slightly augmented 14CO2 production from islets prelabelled with either L-[U-14C]glutamine or [U-14C]palmitate. BTS 67 582 (0.1 mM) also failed to affect biosynthetic activity in islets incubated with L-[4-3H]phenylalanine. It augmented insulin release from islets incubated for 90 min in the absence or presence of D-glucose (2.8 to 16.7 mM), this coinciding with stimulation of 45Ca net uptake. In perifused islets deprived of extracellular D-glucose for 45 min, BTS 67 582 (0.1 mM) decreased 86Rb outflow from prelabelled islets, but failed to increase 45Ca efflux and insulin release. In the presence of D-glucose (7.0 mM), BTS 67 582, whilst failing to decrease 86Rb+ outflow, provoked rapid, sustained and rapidly reversible increases of both 45Ca2+ efflux and insulin output. The latter increases were attenuated, but not totally suppressed, in the absence of extracellular Ca2+. BTS 67 582 (0.1 mM) suppressed the inhibitory action of diazoxide (0.25 mM) upon glucose-stimulated insulin release, but nevertheless augmented insulin output from islets incubated in the presence of 90 mM K+. These findings support the view that the insulinotropic action of BTS 67 582 is mainly attributable to the inactivation of ATP-sensitive K+ channels. An intracellular redistribution of Ca2+ ions may also participate, however, to the islet functional response to BTS 67 582.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号