首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 962 毫秒
1.
Abstract

The evolution of a thermal barrier coating system was followed during exposures at high temperature (1100°C) and under various thermal and mechanical loading conditions. The TBC system is composed of an EB-PVD yttria partially stabilised zirconia topcoat (TC) and a platinum nickel aluminide bondcoat (BC) deposited on a single crystal nickel based superalloy. Depending on the kind of heat treatment (isothermal or thermo-mechanically cycled), different types of defects (pores, cracks, re-oxidation), were observed at the BC/TGO interface, the TGO/TC interface or in the alumina scale. Damage processes were identified and discussed according to the type of imposed heat treatment.  相似文献   

2.
During high temperature operation, the thermally grown oxide (TGO) usually forms along the bondcoat/topcoat interface in thermal barrier coating (TBC) and was characterized as a driving force for the failure of the coating system. The effects of TGO thickness and Al2O3 interlayer applied as an oxygen barrier layer between the bondcoat and topcoat on the magnitude of residual stresses in TBC during cooling process were interpreted using concentric-circle model. The results were coupled with finite element method. The influences of interface asperity and interface topography on the distribution of residual stresses normal to interfaces in TBC were also discussed.  相似文献   

3.
In thermal barrier coatings (TBC), failure occurs near or at the interface between the metallic bondcoat and topcoat. On high temperature conditions, an oxide scale which is named thermally grown oxide (TGO) occurs along the bond/topcoat interface. For diminishing the creation of TGO, a dense coating with low residual stress and thermal stress buffer layer was preferable. High hardness ceramic coatings could be obtained by gas tunnel type plasma spraying, and the deposited coating had superior property in comparison with those deposited by conventional type plasma spray method. In this study, the gas tunnel type plasma spraying system was utilized to produce a zirconia/alumina functionally graded thermal barrier coating and discussed its physical and mechanical properties, thermal behavior and high temperature oxidation resistance of the coating are discussed. Consequently, the proposed system exhibited superior mechanical properties and oxidation resistance at the expenses of a slightly lower thermal insulating effect. This interlayer is preferred in order to minimize the detrimental effect of the phase transformation of gamma-Al2O3 to alpha-Al2O3.  相似文献   

4.
Demand for economically efficient and environmental friendly gas turbine engines leads to the usage of a thermal barrier coating (TBC) system, which is usually sprayed on the top of a superalloy substrate. The system includes a ceramic TBC, a bond coat (BC) and a thermally grown oxide (TGO) layer. Thermo-mechanical mismatch stresses created within the coating at the end of a thermal cycle lead to spallation of the ceramic coating and a rapid increase in the temperature of the substrate. The thickness of the oxide layer and the amount of aluminium depleted during high temperature operation also affect the lifetime of the TBC. As a first step to the prediction of the failure mechanisms and the lifetimes of TBCs, a preliminary study of how the stress distribution within the TBC system is affected by different factors is required. This paper investigates the effects of the sintering of the ceramic layer, of the geometry of the substrate and of the creep of the TGO, on the stresses built up in the TBC system. Three different TBC system geometries were modelled using plane strain FE models with three different sets of TGO creep properties. An Arrhenius equation was fitted to the temperature dependent modulus of the sintered TBC using results published in the open literature. The equation was later implemented within the FE model. It is concluded that the TBC on the top of flatter regions of substrate produces smaller tensile residual stresses compared to sharp corners of the substrate. It was also found that the initiation and propagation of cracks within a TBC, during steady state operation depends on the choice of the creep parameters of the TGO. At the cooling stage, increase in the modulus of the TBC, due to sintering, has been shown to produce stresses within the TBC near the TGO interface that are as large as twice the value that is predicted using a model without sintering.  相似文献   

5.
Abstract

Typical thermal barrier coating (TBC) systems consist of a nickel-base superalloy substrate coated with a MCrAlY or diffusion aluminide bond coat, onto which is deposited a yttria-stabilized zirconia (YSZ) TBC. The bond coats are usually deposited via diffusion aluminizing processes or low pressure plasma spray processes (LPPS). The YSZ can be deposited by air plasma spraying (APS) or electron beam physical vapor deposition (EBPVD). A layer of thermally-grown oxide (TGO), which is usually alumina, forms between the bond coat and YSZ during TBC deposition and subsequent high-temperature exposure. The conventional wisdom is that APS coatings tend to fail in the YSZ and that EBPVD coatings tend to fail at the interface between the TGO and bond coat. However, current research has shown that the situation is much more complex and that the actual fracture path can be a function of the type of bond coat, the type of high-temperature exposure, and coating process parameters. This paper describes the results of a study of the failure of state-of-the-art EBPVD TBCs deposited on NiCoCrAlY and platinum-modified diffusion aluminide bond coats. The failure times and fracture morphology are described as a function of bond coat type. The failure times were found to be a strong function of temperature for both bond coats. The failure for NiCoCrAlY bond coats was found to initiate at defects in the coating, particularly at the TGO/YSZ interface, but the fracture propagated primarily along the TGO–bond coat interface. The failure times and morphologies for platinum-modified diffusion aluminide bond coats depended strongly on bond coat surface preparation. The mechanisms for failure of the two bond coats are described. Also, the effects of modifications to the bond coats and variations in processing parameters on these mechanisms are presented.  相似文献   

6.
The intrinsic deformation accompanying the growth of thermally grown oxide (TGO) can induce significant local stress potentially causing interfacial delamination and coatings fracture in a thermal barrier coating system (TBCs). Multiple mechanisms can be involved in a TGO growth process which is sensitive to the reactive elements contained in the coatings, and as a result anisotropic and nonuniform growth deformation can be produced in the TGO layer. The objective of this study is to analytically and numerically investigate the oxide-growth-induced local stress around the cap-like portions of a TGO layer having grown to a certain thickness and furthermore demonstrate the associated micro-crack patterns. A sphere model is proposed to analytically derive the elastic and elastic–plastic solutions of the stress field, which takes into account the anisotropy and nonuniformity of growth strain as well as the yielding of coating materials. On the other hand, finite element analysis is carried out to consider more realistic undulation morphology of the TGO layer and to verify the analytical prediction. It is seen that the through-thickness and lateral components of the anisotropic growth strain compete in the stress generation and there exist critical conditions for the dominance of different growth strains. The effect of growth strain gradient is examined to disclose the consequence of TGO dominant growth at the TGO/BC (bond coat) interface. The effects of the roughness and thickness of TGO and the plastic behaviour of different coating layers are also analysed. Finally, the possible micro-crack patterns due to TGO growth in typical TBC systems are illustrated with suggestions about how to reduce the driving force for the related structural failure.  相似文献   

7.
The mechanisms that control the lifetime of thermal barrier coating (TBC) systems have been traced by two particular overlay bondcoats serving as model systems: superalloy pins (IN100, CMSX‐4) with two alternative NiCoCrAlRE (RE: Hf, Y) bond coat compositions (i) NiCoCrAlY without and (ii) with co‐dopants of silicon and hafnium. On top an electron‐beam physical‐vapor deposited (EB‐PVD) yttria partially stabilized zirconia (YPSZ) TBC commonly mixed with 2 wt.% hafnia, or, rarely with 10 wt.%, was applied. The test pins were thermo‐cycled at 1100 and 1150 °C until failure. Identical lifetimes in cyclic tests on YPSZ TBCs with 2 (relatively high sintering rate) and 10 wt.% hafnia (relatively low sintering rate) preclude an effect of diffusion mechanisms of the YPSZ TBC on lifetime. The fit of lifetimes and test temperatures to Arrhenius‐type relationships gives activation energies for failure. These energies agree with the activation energies for anion and cation diffusion in alumina for the respective bondcoat variant: (i) for the NiCoCrAlY/TBC system for O2‐ diffusion in alumina, (ii) for the NiCoCrAlYSiHf/TBC system for Al3+ diffusion in alumina. SEM and EDS investigations of the thermally grown oxides (TGOs) confirm the mechanisms responsible for TBC failure as indicated by activation energies. Two categories of failure can be distinguished: (i) NiCoCrAlY coatings fail by an “adhesive mode of failure” along smooth bond coat/TGO interfaces driven by a critical TGO thickness. (ii) NiCoCrAlYSiHf coatings fail later and more reluctantly by a “cohesive” crack mode via de‐cohesion at the TGO/TBC interface. In the latter case a quasi‐integrity of the crack‐affected TGO is lengthily maintained up to failure by a crack‐pinning mechanism which runs via Al3+ supply from the bondcoat.  相似文献   

8.
Abstract

High temperature coating systems, consisting of a René N5 superalloy, a Ni–23Co–23Cr–19Al–0.2Y (at.%) bond coating (BC) and a partially yttria stabilised zirconia (PYSZ) thermal barrier coating (TBC), were thermally cycled to failure for three different pre-oxidation treatments performed for 1 h at 1373 K and a partial oxygen pressure (pO2) of 20 kPa, 100 Pa and 0.1 Pa, respectively. These pre-treatments resulted in the formation of different thermally grown oxide (TGO) layers prior to TBC deposition with respect to the presence of the transient oxides NiAl2O4, θ-Al2O3, and Y3Al5O12 at the TGO surface. The TGO microstructures after TBC deposition and thermal cycling were investigated with a variety of analytical techniques and compared with those after pre-oxidation. For all pre-oxidation treatments, a double-layered TGO developed on the BC during thermal cycling. The TGO adjacent to the TBC consisted of small Zr-rich oxide crystallites embedded in an Al2O3 matrix when the TGO surface after pre-oxidation comprised of Y3Al5O12 plus α-Al2O3. When the TGO surface constituted of θ-Al2O3, the Zr-rich oxide crystallites were embedded in a NiAl2O4 spinel layer after thermal cycling. Zr was absent in the oxide layer when the TGO surface prior to TBC deposition was composed of NiAl2O4 spinel. The TGO contiguous to the BC consisted in all cases of α-Al2O3 with Y3Al5O12 crystallites. The roughness of the α-Al2O3/BC interface increased for a higher density of Y-rich oxide protrusions (i.e. pegs) along this interface.  相似文献   

9.
Abstract

Isothermal oxidation tests have been carried out on a thermal barrier coating (TBC) system consisting of a nickel-based superalloy, CoNiCrAlY bond coat applied by HVOF and yttria-stabilised zirconia (YSZ) top coat applied by EB-PVD. Bond coat microstructure, coating cracking and failure were characterised using high resolution scanning electron microscopy complemented with compositional analyses using energy dispersive X-ray spectrometry. A protective alumina layer formed during the deposition of the YSZ top coat and this grew with sub-parabolic kinetics during subsequent isothermal oxidation at temperatures in the range 950 to 1150°C. After short exposures at 1050°C and final cooling, small sub-critical cracks were found to exist within the YSZ but adjacent to bond coat protuberances. Their formation is related to the development of local tensile strains associated with the growth of an alumina layer (TGO) on the non-planar bond coat surface. However, for the specimens examined, these cracks did not propagate, in contrast to other TBC systems, and final spallation was always found to have occurred at the bond coat/TGO interface. This shows that the strain energy within the TGO layer made a significant contribution to the delamination process.  相似文献   

10.
热障涂层失效机理研究进展   总被引:12,自引:0,他引:12  
热障涂层(TBCs)具有良好的隔热性能,是航空发动机和燃气轮机高温部件的关键材料.在高温服役状态,涂层的剥落会导致严重的问题,因此涂层的失效机理是热障涂层研究中急需解决的关键问题.除了受到热应力的影响以外,涂层的失效还受到热生长氧化物(TGO)的生成和长大的影响,本文介绍了粘结层的氧化、TGO的生成和长大以及微裂纹的产生、扩展、直到剥离脱落的整个失效过程;探讨了影响热障涂层失效的若干因素,并对其进行的各种改性研究进行了概述,分析总结了热障涂层失效相关研究的发展趋势.  相似文献   

11.
热生长氧化物(TGO)的形成与长大是热障涂层失效的根本原因。先在IC10高温合金基体上超音速火焰喷涂(HVOF)NiCoCrAlTaY粘结层(BC层),再等离子喷涂二元稀土氧化物稳定氧化锆Sc2O3-Y2O3-ZrO2,喷涂样在1 100℃恒温氧化,利用扫描电镜(SEM)、能谱仪对断面形貌、成分进行分析,讨论了TGO的形成机理及其与热障涂层失效的关系。结果表明:随着恒温氧化时间增加,TGO层底部的Al含量下降,上部、中间弥散颗粒及底部的Ni含量均增加,上部、中间弥散颗粒中Cr含量均减少;喷涂样氧化140 h后,TGO层由靠近陶瓷层的富(Cr,Al)2O3层、弥散其间的富Ni颗粒和靠近BC层的Al2O3层组成;TGO的生长速度先由Al与O2化学反应速度决定,接着受BC层金属元素扩散速度影响,最后由化学反应速度和扩散速度共同控制;减少TGO中的有害氧化物含量以降低涂层内的应力,可有效提高涂层的使用寿命。  相似文献   

12.
分别采用真空和大气等离子体喷涂工艺在GH3128镍基高温合金基材表面制备CoNiCrAlY结合层和氧化钇部分稳定的氧化锆陶瓷层组成热障涂层。采用有限元模拟计算了涂层的残余应力, 研究了基材预热对打底层与陶瓷层界面应力分布的影响规律。结果表明, 预热基材可以显著地降低陶瓷顶层内部产生的残余拉应力。采用钻孔法测量了涂层中的残余应力并与模拟结果作定量比较, 结果表明: 有限元模拟计算结果与实验测量结果能较好吻合。  相似文献   

13.
The cyclic oxidation of NiCrAlY + YSZ coating exposed to NaCl vapor has been investigated under atmospheric pressure at 1050 °C, 1100 °C and 1150 °C. The result showed that the cyclic oxidation life of NiCrAlY + YSZ coating in the presence of NaCl vapor was shortened compared with that in air. The failure of the TBC exposed to NaCl vapor occurred within the top coat and close to the YSZ/thermal growth oxide (TGO) interface. A finite element analysis was employed to analyze the stress distribution in the coatings. The computed result showed that maximum stresses occurred at the interface between the bond coat and TGO near the edge of the sample and the increased thickness of TGO caused the value of stress in TGO/YSZ interface to increase. The comparison of the maximum stresses indicated that the spinel TGO resulted in significantly higher stresses than Al2O3 TGO. This implies that the formation of spinel plays a dominant role in shortening the coating cycling lifetime.  相似文献   

14.
A new concept of thermal barrier coating (TBC) system is presented, based on a metal‐glass composite (MGC). Coatings of metal‐glass composite can be deposited by vacuum plasma spraying and slip casting with a subsequent sinter step. In this TBC system the thermal expansion coefficient depends on the metal‐glass ratio. It is chosen in such a way that the thermal expansion coefficient of the composite is close to the one of the substrate. This leads to reduced thermal stresses and hence improved thermal cycling life times. Because of the low thermal mismatch, coatings of more than 600 μm thickness can be realized. Another advantage of the gas tight composite coatings is their ability to protect the bondcoat from severe oxidation. Correspondingly, long life times have been found for these TBCs in oxidation tests. Also good results were found during thermal cycling tests. Furthermore some aspects of the microstructure evolution of the composite during heat treatment are described.  相似文献   

15.
采用PASCAN-64型水浸超声设备并配合扫描电镜对8wt %Y2O3-ZrO2(8YSZ)双层热障涂层热震过程中内部组织结构演变进行了检测。结果表明, 当超声波从垂直陶瓷层方向入射至粘结层反射所获得的回波信号影像主要反映了陶瓷层组织结构演变, 从垂直基底方向入射至粘接层/陶瓷层界面处反射所获得的回波信号影像主要反映了热生长氧化物层组织结构演变, 从垂直陶瓷层方向透射整个试片所获得的回波信号影像综合反映了整个涂层组织结构演变。当陶瓷层中均匀分布着孔隙率<11%、最大横向尺寸<50 μm的孔隙以及热生长氧化物层主要为致密的α-Al2O3时, 回波信号的幅值dB<0, 反映在影像中的信号分布均匀, 表明涂层处于良好状态。当陶瓷层中均匀分布着孔隙率>44%、最大横向尺寸>100 μm的孔隙以及热生长氧化物层主要为具有稀疏结构且厚度>5.2 μm的Cr、Co氧化物时, 回波信号的幅值dB>0的区域连接成片, 则预示着涂层即将失效或已失效。可见, 水浸超声技术能够较准确地反映热障涂层内部组织结构演变, 是一种较好的热障涂层内部缺陷的无损检测方法。  相似文献   

16.
Abstract

The microstructural evolution of the alumina-zirconia mixed zone in a NiCoCrAlY-based electron beam physical vapor deposited (EB-PVD) yttria partially stabilized zirconia (Y-PSZ) thermal barrier coating (TBC) system from the as-coated condition into the advanced stages of TBC lifetime is monitored by analytical transmission electron microscopy (TEM). In the as-coated condition yttria-rich islands at the thermally-grown oxide (TGO)/TBC interface locally impede zirconia uptake of the scale during TBC deposition and give rise to the formation of an “off-plane” alumina-zirconia mixed zone textured perpendicular to the TGO/TBC interface. During prolonged isothermal/cyclic oxidation an increased chromium diffusion through the TGO scale turns the mixed zone into a reaction zone introducing a morphological instability of the mixed zone/TBC interface due to solutioning of the bottom TBC layer.

This microstructural pattern is corroborated by a triple-stage growth model for the mixed zone during three successive stages in TBC lifetime: (i) during TBC deposition, the thickness of the mixed zone increases due to predominant outward aluminum diffusion and uptake of zirconia. No columnar alumina zone (CAZ) has formed at this stage, (ii) upon completion of the transition alumina-to-corundum phase transformation the thickness of the mixed zone remains constant while the change in diffusion mechanism for an inward oxygen diffusion process now initiates parabolic growth of the columnar alumina sublayer of the TGO scale, (iii) in the late stage of TBC lifetime an marked outward chromium diffusion from the bond coat causes the mixed zone to resume growth due to TBC destabilization and the formation of a (Al, Cr)2O3 mixed oxide matrix phase.

A transient YCrO3 phase is proposed for driving the destabilization of yttria-rich sections of the bottom TBC layer.  相似文献   

17.
Abstract

The degradation of coatings used to protect turbine blades is closely linked to spalling resistance, which depends on the stability of the protective oxide scale produced by oxidation of the bond coat. In the present study, TEM microstructural observations associated with SIMS analyses were performed, according to different experimental conditions, to describe the microstructural and chemical changes occurring in a NiPtAl bond coat deposited on a nickel based superalloy, as well as elemental segregation at the Al2O3/NiAlPt interface.

Interfacial sulfur segregation is well known to be responsible for alumina spallation during exposure at high temperature, this phenomenon often being linked to cavity formation and growth. Sulfur detection was achieved using the SIMS technique which enables S segregation to be detected at the oxide/BC interface or within the bond coat layer.

The purpose of the present study was to compare the degree of S segregation, at the scale/BC interface and within the NiPtAl alloy, for different Ni based alloys (two S contents) and different oxidation conditions (isothermal and cyclic). The results obtained showed that, at the TGO/BC interface, the concentration of voids depends on the initial sulfur content in the superalloy for isothermal treatments. On the contrary, after cyclic tests, interfacial sulfur enrichment increases while the interfacial porosity fraction remains constant. These results agree with the proposal that sulfur segregation occurs at both cavity surfaces and intact interfaces.  相似文献   

18.
TiAl合金具有低密度、高比强度的优异性能,是一种潜在的航空发动机用结构材料。TiAl合金的服役温度范围为700~900℃,在其表面制备高温热防护涂层可以进一步提高服役温度。本研究采用等离子喷涂技术在TiAl合金表面制备了新型TiAlCrY/YSZ涂层,并与传统的NiCrAlY/YSZ热障涂层进行高温长时间服役性能对比研究。结果发现, TiAlCrY/YSZ涂层在1100℃空气环境中服役300 h保持完好,表现出良好的高温性能,而NiCrAlY/YSZ涂层在1100℃的服役寿命不足100 h。显微分析结果表明, TiAlCrY黏结层表面会形成一层连续且致密的TGO,其主要成分为Al2O3,与YSZ涂层的界面兼容性良好。并且TGO在1100℃空气环境中服役300 h后,厚度仍<8μm。以上研究表明,与传统NiCrAlY/YSZ热障涂层相比, TiAlCrY/YSZ更适合作为TiAl合金表面的高温热防护涂层。  相似文献   

19.
Operating temperatures in gas turbine engines have reached to 1200°C with the latest developments in coating technology. Thermal shock and furnace oxidation tests are widely used to determine thermal barrier coating (TBC) performance and its durability in aircraft applications. This paper presents the results of thermal shock and furnace oxidation tests, carried out with regard to the microstructure and TGO (thermally grown oxide) growth behavior of TBC systems. Isothermal oxidation behavior of TBCs was evaluated through examination of microstructure, formation, and growth behavior of TGO layers at 1200°C for different time periods in furnace oxidation tests. On the other hand, thermal shock behavior of TBC was evaluated through examination of its durability at 1200°C with thermal shock test, which was carried out until the coating failure became visible. The relationship between the TGO growth and oxidation behavior was discussed using furnace oxidation test results.  相似文献   

20.
Oxide growth and damage evolution in thermal barrier coatings   总被引:1,自引:0,他引:1  
Cracking in thermal barrier coatings (TBC) is triggered by the development of a thermally-grown oxide (TGO) layer that develops during thermal cycling from the oxidation of aluminum present in the bond coat (BC). In the present communication a numerical model is presented that describes the interactive development of the TGO morphology and the fracture processes in TBC systems in a mesh-independent way. The evolution of the TGO–BC mixture zone is described by an oxygen diffusion–reaction model. The partition-of-unity method is employed for the simulation of discrete cracking, where cracks can nucleate and propagate across finite elements at arbitrary locations and orientations. The validity of the model is demonstrated through the analysis of a representative TBC system subjected to a specific thermal cycling process. A parametric analysis demonstrates the sensitivity of the response of the TBC system to the fracture strength of the top coat. The simulation results indicate that cracks appear primarily at the current location of the BC–TGO interface and may nucleate at early stages of thermal cycling. These results are in good agreement with recent experimental observations reported in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号