首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
目的初步探索由聚苯胺/磷酸锌有机-无机复合钝化填料和环氧-聚硅氧烷树脂制备的自修复涂层的修复和防腐性能。方法采用微区交流阻抗技术(LEIS)、扫描电子显微技术(SEM)和电化学阻抗技术(EIS),研究了聚苯胺/磷酸锌/聚硅氧烷复合涂层的防腐性能和在人工损伤部位的修复功能。结果由微区电化学阻抗和电化学阻抗测试可知,环氧-聚硅氧烷清漆具有自修复和优异的耐蚀性能;偶联剂处理的聚苯胺/磷酸锌有机-无机复合钝化填料(HCE),可显著提升环氧-聚硅氧烷涂层的自修复和耐蚀性能。当HCE的添加量为0.3%(以占环氧-聚硅氧烷涂料质量的百分比计)时,涂层的自修复和耐蚀性能最佳,缺陷部位修复后的阻抗值最大达到70 k?,是环氧-聚硅氧烷清漆的9倍。涂层阻抗值随浸泡时间的延长而增加,浸泡3750 h时,涂层阻抗值增至10~(11)?·cm~2。结论当涂层产生缺陷时,一方面聚苯胺/磷酸锌有机-无机复合填料发生氧化还原反应,生成新的氧化膜;另一方面,聚苯胺与环氧-聚硅氧烷树脂发生交联固化反应,在基体缺陷处成膜,提高了涂层的致密性;二者协同作用使HCE3涂层试样具有最佳的耐蚀性能和自修复功能。  相似文献   

2.
本征态聚苯胺/环氧有机硅复合涂层的防腐性能   总被引:2,自引:1,他引:1  
目的研究本征态聚苯胺/环氧有机硅复合涂层在Na Cl溶液中对Q235低碳钢的防腐效果。方法以自制的本征态聚苯胺为防腐颜料,按比例加入填料及助剂,砂磨分散后制备质量分数为0.5%、1.0%及1.5%的本征态聚苯胺/环氧有机硅复合涂层。Q235钢板经砂纸打磨后去油除渍,采用喷涂方式涂覆制备涂层样品。利用扫描电子显微镜观察不同添加量的本征态聚苯胺在环氧有机硅涂层中的分散状态,涂层在质量分数为3.5%的Na Cl溶液浸泡不同时间,采用X射线光谱分析涂层浸泡后的物相,并通过开路电位和电化学阻抗谱对比分析涂层的耐腐蚀性能。结果本征态聚苯胺/环氧有机硅复合涂层中EB添加量(质量分数)为1.0%时,颗粒分散较均匀且能促进形成致密的氧化钝化膜,浸泡后期的涂层表面微孔电阻值较高(Rpo=3.89×106Ω·cm2),表现出良好的电化学性能;添加量(质量分数)为0.5%时颗粒分散较稀疏,涂层的阻抗值和拟合电阻值均下降;添加量(质量分数)为1.5%时涂层的阻抗值和拟合电阻值较小,腐蚀速度不断加快。结论本征态聚苯胺添加量(质量分数)为1.0%时,其在环氧有机硅涂层的分散均匀且致密,并在3.5%的Na Cl溶液中浸泡后对Q235低碳钢表现出良好的防腐效果。  相似文献   

3.
孙议祥  王尧  满成  崔中雨  王昕  董超芳 《表面技术》2022,51(7):169-175, 185
目的 研究?10 ℃下固化的复合涂层在常温和低温环境下的防腐性能。方法 通过溶液共混法成功制备了2–氨基–5巯基–1,3,4噻二唑修饰的氧化石墨烯(AMT–GO),并将其作为填料添加到环氧树脂(EP)中,随后在?10 ℃环境下进行固化,形成AMT–GO/EP复合涂层。同时,制备纯环氧涂层(纯EP)和氧化石墨烯增强环氧涂层(GO/EP)作为对照。通过盐雾试验、低温–盐雾交替试验、附着力测试和吸水率测试等方法研究了低温固化涂层的防腐性能。结果 加入AMT–GO填料的环氧涂层在?10 ℃的环境下经过72 h后可良好固化,形成更致密的交联结构,在6 d的中性盐雾试验后仍具备良好的防腐性能。该涂层的吸水率(2.77%)约为纯环氧涂层(5%)的一半,其附着力(5.53 MPa)大于纯环氧涂层的附着力(4.01 MPa)。结论 AMT可以有效地改善氧化石墨烯在环氧涂层中的分散性,在环氧涂层中添加一定量的AMT–GO可以提高低温固化涂层的交联密度,有效阻碍了腐蚀介质的渗透过程,提高了涂层的防腐性能。另外,该涂层在低温–盐雾交替试验中仍保持十分优异的防腐性能。  相似文献   

4.
为提高环氧涂层在腐蚀环境下的防腐性和持久性,合成一种负载有缓蚀剂苯并三唑(BTA)的苯并三唑@磺化聚苯胺功能化倍半硅氧烷(BTA@SPANI-POSS),随后将BTA@SPANI-POSS与环氧树脂共混得到BTA@SPANI-POSS环氧涂料,最后在Q235碳钢上制备数种复合环氧涂层。通过红外光谱、紫外可见光谱、扫描电子显微镜对BTA@SPANI-POSS的结构、缓蚀性能、表面形貌进行表征,利用接触角测量仪、电化学工作站研究所制备涂层的疏水性能和防腐性能。研究表明,随着SPANI-POSS的添加,涂层沾湿性能降低。电化学阻抗谱(EIS)和塔菲尔极化曲线测试结果表明,与SPANI-POSS环氧涂层相比,负载有BTA的BTA@SPANI-POSS环氧涂层对金属基底具有更高和更持久的保护能力,其中试样EB1.5%的腐蚀电流密度icorr为16.67?A·cm-2,其极化电阻Rp为2.467 M?·cm2,具有较低的腐蚀动态速率。在3.5 wt.%NaCl溶液中浸泡15 d后环氧涂层仍具有良好的防腐蚀效果,其阻抗值Z0.01Hz仍保留有第1 d时的2...  相似文献   

5.
目的研究聚苯胺/石墨烯水性防腐涂料的耐蚀性能。方法采用盐酸为掺杂酸,以聚乙烯基呲咯烷酮(PVP-K30)为空间稳定剂,利用原位聚合法,以苯胺和石墨烯为原料,过硫酸铵为氧化剂,制备聚苯胺/石墨烯复合材料。将聚苯胺/石墨烯、纯聚苯胺、石墨烯分别添加到HG-54C乳液中制备水性防腐涂料,利用动电位极化曲线和盐雾试验对比分析聚苯胺/石墨烯、纯聚苯胺、石墨烯水性涂层的防腐性能,再通过傅里叶红外光谱(FTIR)、扫描电镜(SEM)对比分析其结构和微观形貌。结果聚苯胺均匀地覆盖在石墨烯的片层结构上形成氧化插层结构。当复合材料浸泡在3.5%Na Cl溶液中,腐蚀电流密度为2.3955×10-7A/cm2。盐雾试验表明,聚苯胺/石墨烯的防腐性能优于添加纯聚苯胺和石墨烯的性能。结论聚苯胺/石墨烯涂层具有良好的耐蚀性能,其耐蚀性能优于纯聚苯胺涂层和石墨烯涂层。  相似文献   

6.
石墨烯材料作为填料加入到聚合物涂层中可以有效提高涂层防腐性能。以提高 GO 分散性获取高防腐性能复合涂层为切入点,采用 2-6 二氨基吡啶为改性剂制备改性氧化石墨烯复合材料(BGO),分析改性温度、改性剂配比量对 BGO 制备及防腐性能影响。再将 BGO 添加到环氧树脂中制备改性氧化石墨烯复合涂层(BGO / EP),探究 BGO 添加量对复合涂层防腐性能的影响,并揭示涂层防腐机理。XRD、Raman、FT-IR、SEM、AFM、TEM 等系列表征结果表明 2-6 二氨基吡啶成功接枝到 GO 表面。当反应温度为 80 ℃,改性剂与 GO 配比量为 1∶5 时,对 GO 的改性效果最佳。电化学试验、盐雾试验和附着力试验结果证明,BGO 的添加对环氧树脂防腐性能有明显提升作用,且当添加量为 0.1 wt.%时效果最佳。在 3.5% NaCl 溶液中浸泡 10 d 后 BGO / EP 的涂层电阻仍达到 1.03 G?·cm2 ,比纯环氧树脂涂层的 38.9 k?·cm2提高了 5 个数量级,比改性前的 GO / EP 复合涂层的 262 k?·cm2提高了 4 个数量级,防腐性能显著提高。研究成果可为进一步优化石墨烯基防腐涂层制备工艺,探究氨基改性氧化石墨烯复合材料在环氧树脂中的分散效果,挖掘其在涂层体系中的作用机理奠定基础。  相似文献   

7.
为提高AZ91D镁合金基体的耐蚀性,采用微弧氧化、电沉积和自组装工艺在AZ91D镁合金表面制备了微弧氧化/氧化石墨烯/硬脂酸(MAO/GO/SA)复合涂层。通过SEM对复合涂层的微观组织结构进行了分析,利用电化学阻抗谱、极化曲线测试了复合涂层的耐蚀性能。结果表明,最佳电沉积电压为4 V,此时,MAO/GO复合涂层的电荷转移电阻(Rct)为4.41×105Ω·cm2,腐蚀电流密度(Jcorr)为3.88×10-7 A/cm2。醇水比为7∶3时,MAO/GO/SA复合涂层的Rct值为3.07×106Ω·cm2,Jcorr为3.02×10-8 A/cm2,达到超疏水状态,涂层耐蚀性最好。  相似文献   

8.
分别制备聚苯胺改性石墨烯、纳米粒子改性石墨烯和石墨/炭黑复合物三种导电防腐涂料,并将其分别涂覆在Q235钢表面制备导电防腐涂层接地材料。采用接触角仪、电化学阻抗谱、Tafel极化曲线和光学显微镜,研究了该上述涂层在酸性土壤模拟液中的腐蚀性能。结果表明:三种导电防腐涂层均具有优良的防腐性能和较大的接触角。纳米粒子改性石墨烯涂层和聚苯胺改性石墨烯涂层防腐效果大于石墨/炭黑复合导电涂层。纳米粒子改性石墨烯涂层和聚苯胺改性石墨烯涂层的保护效率分别高达92.09%和91.44%。  相似文献   

9.
聚苯胺含量对镁合金上聚苯胺环氧涂层防腐性能的影响   总被引:1,自引:1,他引:0  
陈永福  闫清立  钟军  王琴 《表面技术》2010,39(6):42-43,100
在AZ31B镁合金表面制备了含本征态聚苯胺O%,1%,2%,4%,6%的聚苯胺/环氧防腐涂层,通过Tafel极化曲线、电化学阻抗谱测试及中性盐雾实验对比了其在3.5%NaCl溶液中的防腐性能.结果表明:聚苯胺的含量时聚苯胺环氧涂层的防腐性能有较大影响,聚苯胺的质量分数为2%时,涂层具有最佳的防腐性能.  相似文献   

10.
高燕  刘成宝  任思明  叶育伟 《表面技术》2018,47(12):263-269
目的 提高石墨烯在有机涂层中的分散性,并赋予其一定的功能性,制备一种方法简单、环境友好、成本低廉的水性环氧复合涂层。方法 以氧化石墨烯为原料,以1-(3-二甲胺基丙基)-3-乙基碳二亚胺(EDC)为缩合剂,在常温下经酰胺化反应将天然缓蚀剂色氨酸接枝到氧化石墨烯表面。再利用水合肼将其部分还原,得到色氨酸功能化的石墨烯,并成功分散至水性环氧涂层中,制备出色氨酸功能化石墨烯/环氧复合涂层。选用红外光谱仪、拉曼光谱仪、扫描电镜及透射电镜对功能化石墨烯的片层结构和微观形貌进行分析;利用电化学工作站对复合涂层在3.5%NaCl溶液中的耐蚀行为进行评价。结果 色氨酸分子成功接枝在氧化石墨烯表面,且功能化的石墨烯在无水乙醇及水性树脂中表现出优异的分散性。在防护性能方面,较之于空白样及未改性石墨烯/环氧复合涂层,在浸泡40 d后,功能化石墨烯基复合涂层表现出最高的阻抗模值(107 Ω?cm2)及电荷转移电阻值。同时,在所有涂层中,经功能化石墨烯复合涂层覆盖后,金属基底表现出最为轻微的腐蚀。结论 功能性的石墨烯添加至水性环氧涂层中可以显著提高涂层的耐腐蚀性能。  相似文献   

11.
张颖君  李婷  窦宝捷  崔学军  邵亚薇  韩沁雯 《表面技术》2021,50(4):304-312, 318
目的 针对聚苯胺环氧涂层物理屏蔽性能欠佳的问题,通过引入具有片层结构的鳞片石墨,从而进一步提高涂层对镁合金的腐蚀防护性能.方法 利用化学氧化聚合法在鳞片石墨表面合成聚苯胺,通过X射线衍射仪、扫描电子显微镜、傅里叶变换红外光谱仪,对所得到的聚苯胺/鳞片石墨复合粉末进行表征.将合成的复合粉末均匀分散于环氧树脂中后,在AZ91D镁合金表面制备涂层,通过电化学阻抗测试对涂层在3.5%氯化钠溶液中的腐蚀防护性能进行研究.结果 聚苯胺可以在鳞片石墨的表面聚合,鳞片石墨的加入使聚苯胺环氧涂层的附着力略有降低,涂层硬度、柔韧性及耐冲击性能没有明显改变,但鳞片石墨的加入明显提高了聚苯胺环氧涂层的阻抗值.在浸泡前1488 h,苯胺与鳞片石墨的质量比为1:1时,涂层的阻抗值为1.3×108?·cm2,防护性能最好.但随着浸泡时间的延长,苯胺与鳞片石墨的质量比为4:1时,涂层的阻抗值逐渐高于其他涂层,当浸泡4008 h后,其阻抗值为1.6×108?·cm2,仍具有较优异的防护性能.结论 环氧涂层中添加聚苯胺/鳞片石墨复合粉末后,通过鳞片石墨前期的屏蔽与聚苯胺长期缓蚀的协同作用达到了对镁合金较好的防护效果,而涂层的这一防护效果和苯胺与鳞片石墨比例有关.  相似文献   

12.
在氧化石墨烯纳米片(GO)改性的基础上,于非盐酸介质中采用原位共聚法合成了聚苯胺纳米纤维/改性氧化石墨烯复合材料(PANI-F/CTGO),将其作为防腐增效组分引入到水性环氧聚合物乳液(WEP)中构建复合涂料。采用电化学方法和盐雾实验研究了涂料在加速腐蚀条件下对不锈钢的腐蚀防护作用,对腐蚀产物结构进行了分析。复合材料中PANI-F与CTGO的化学键接提高了PANI-F/CTGO在环氧乳液中的分散性和相容性。非盐酸介质条件下制备的PANI纳米纤维没有腐蚀介质盐酸的引入,在涂层中能发挥出更好的耐蚀性;PANI-F/CTGO/WEP涂层具有较高的开路电位(OCP)值和阻抗模,耐盐雾时间达到720 h,显示了优异的防腐性能,这主要是PANI-F/CTGO的主动钝化与物理阻隔协同作用的结果。  相似文献   

13.
陈均  陈宇  卢海艳 《表面技术》2017,46(11):282-286
目的研究石墨烯/偏钒酸钠/有机硅氧烷改性树脂复合防腐蚀涂层对碳钢板的防腐性能。方法采用高分子辅助电化学法合成具有优异水分散性的功能化石墨烯,并将其加入到偏钒酸钠/有机硅氧烷改性树脂涂层中,用于碳钢板的表面防腐。通过透射电镜、拉曼光谱和纳米粒度仪对石墨烯的结构和水分散性进行了表征。利用Tafel曲线、电化学阻抗谱和硫酸铜点滴试验,研究了石墨烯/偏钒酸钠/有机硅氧烷改性树脂复合涂层的耐蚀性能。结果透射电镜和拉曼光谱分析表明成功制备了石墨烯,且石墨烯的Zeta电位值约为-50 m V,赋予了石墨烯优异的水分散性。Tafel曲线测试显示,相对于偏钒酸钠/有机硅氧烷改性树脂复合涂层,加入石墨烯后,复合涂层的腐蚀电流密度明显下降,当石墨烯含量为0.10%(占有机硅氧烷改性树脂的质量百分比)时,腐蚀电流密度下降至0.554×10-6 A/cm2。电化学阻抗谱测试中,石墨烯含量为0.10%的复合涂层的阻抗值最大,表现出良好的抗腐蚀性能。结论所制备石墨烯的加入能够提高石墨烯/偏钒酸钠/有机硅氧烷改性树脂复合涂层对腐蚀因素(水和氧气)的阻隔作用,使复合涂层具有优异的耐蚀性能。  相似文献   

14.
将不同比例的装载缓蚀剂蒙脱土和环氧树脂混合制备出纳米复合环氧涂层。根据电化学阻抗谱 (EIS) 和盐雾实验对涂层的耐蚀性进行表征。结果表明,3%装载蒙脱土环氧涂层的水扩散系数为9.89×10-11 cm2/s,孔隙率为2.22×10-8,整个浸泡过程中阻抗值在109 Ωcm2以上,表现出最佳的耐蚀性。  相似文献   

15.
利用正交试验筛选出最优基础涂料(EP)配方,通过在基础涂料中添加分散剂和石墨烯(GE-EP)、偶联剂改性石墨烯(GK-EP)、或改性石墨烯以及分散剂(GDK-EP),制备了三种石墨烯/环氧复合涂料。测试了纯环氧涂层(EP)和三种石墨烯/环氧复合涂层的基础物理性能、耐盐雾性能和电化学性能,考察了石墨烯加入量和加入方式对环氧涂层防腐蚀性能的影响。结果表明:当在环氧涂层中添加分散剂,且偶联剂改性石墨烯质量分数为1.5%时,涂层的综合性能最好。此时,涂层的抗冲击性达到50cm·kg,附着力为2级,硬度高于6 H,并且耐盐雾时间高达1 500h,腐蚀电流密度低至2.039×10~(-8) A/cm~2。含1.5%石墨烯的GDK-EP涂层的各项性能都远高于EP涂层的。  相似文献   

16.
通过乳液聚合法,控制表面活性剂十二烷基苯磺酸钠(SDBS)的添加量,一步合成了具有超疏水性质、空心球形貌的聚苯胺胶囊,该微纳米空腔结构可实现缓蚀剂等物质的包覆功能。结果表明,不同表面活性剂添加量下的产物形貌均为空心球状,并且可实现水接触角由67°提升到152°的超疏水。将超疏水胶囊掺入涂层,在3.5%NaCl溶液中浸泡14 d后,低频阻抗模值为2.69×1010,与添加亲水性聚苯胺的环氧树脂涂层及不添加填料的环氧树脂涂层相比,涂层电阻超过一个数量级以上。其原因为粉末的超疏水性,增大了腐蚀介质在涂层中扩散阻力,同时由于长链烷基的掺杂,改善了聚苯胺粉末在环氧树脂中的相容性,提高了涂层致密性及耐蚀性。  相似文献   

17.
通过水热法制备了8-羟基喹啉锌(ZnQ2)荧光耐蚀双功能纳米填料,并添加到环氧树脂中制备荧光指示底漆;以单宁酸修饰的碳纳米管(TA-CNTs)作为填料制备高阻隔性环氧面漆,最终合成具有荧光缺陷指示与高耐蚀的双功能涂层。利用SEM、FT-IR、XRD、荧光光谱等验证了荧光纳米材料的成功合成;通过电化学测试和盐雾实验对该复合涂层的耐蚀性进行了评价,并通过荧光显微镜对复合改性涂层的缺陷指示功能进行了验证。结果表明:合成的ZnQ2纳米填料具有优异的荧光指示和缓蚀作用,复合涂层经30 d的中性盐雾实验后,其低频阻抗|Z|0.01 Hz仍保持在2.95×109Ω·cm2,表现出了优异的耐蚀性。当复合涂层发生机械损伤时,涂层破损处在365 nm紫外照射下可发生强烈荧光。且经过盐雾实验10 d后,涂层缺陷处的荧光依旧保持良好,表明该荧光涂层有利于对涂层缺陷的快速诊断和维修指示。  相似文献   

18.
目的 制备一种新型复合防腐涂层,增强316L不锈钢在中高温硫酸溶液中的耐蚀性.方法 首先使用化学氧化法在石墨(G)颗粒表面原位聚合聚苯胺(PANI),制得PANI/G复合材料,再使用环氧树脂(EP)作为粘结剂,制备PANI/G/EP复合涂层.对比了PANI/G/EP复合涂层与PANI/EP复合涂层及添加氧化石墨烯(GO...  相似文献   

19.
储油罐环氧基钛纳米复合导静电涂层耐蚀性能   总被引:1,自引:1,他引:0  
目的研究钛纳米填料粒径和含量对环氧基钛纳米复合导静电涂层耐蚀性能的影响。方法将不同粒径的钛纳米粉(经聚乙烯基吡咯烷酮表面预处理)按不同量加入双酚A(E)型环氧树脂中,之后涂覆在Q235钢表面形成导静电复合涂层。通过表面电阻测试、截面形貌观察、电化学极化曲线和阻抗谱测试,分别评价复合涂层的导静电性能、截面结构和耐蚀性。结果钛纳米粉添加量(占涂层质量百分比)为28%时,随着钛纳米粉粒径从40 nm增大到200 nm,环氧基复合导静电涂层的表面电阻降低,截面结构更加杂乱,添加100 nm钛纳米粉的涂层阻抗和极化曲线阳极电流分别出现最大值和最小值。添加的钛纳米粉粒径为100 nm时,随着添加量从7%增至28%,环氧基复合导静电涂层的表面电阻降低,截面孔洞增大,阻抗值降低,极化曲线阳极电流增大。结论钛纳米填料的加入可以有效提高涂层的导静电性能、致密性和耐蚀性。当添加量为28%时,钛纳米粒径大于100 nm后,涂层截面形貌更加杂乱,耐蚀性降低。对于100 nm粒径的钛纳米填料,当其添加量大于7%时,复合涂层的致密性和耐蚀性降低。  相似文献   

20.
陈宇  潘正凯  陈均 《表面技术》2017,46(7):26-31
目的研究水性聚苯胺/海泡石/丙烯酸乳液复合防腐涂层在NaCl溶液中对马口铁的防腐效果。方法采用原位化学氧化聚合方法,制备了聚苯胺/海泡石复合材料,并以丙烯酸乳液为成膜物质,制备了水性聚苯胺/海泡石/丙烯酸乳液复合防腐蚀涂层材料。通过扫描电镜和EDX对聚苯胺/海泡石复合材料的结构和形貌进行了表征。利用电化学交流阻抗谱、塔菲尔曲线和硫酸铜点滴试验,研究了海泡石/苯胺投料比、聚苯胺/海泡石复合材料用量、磷酸浓度等对复合涂层防腐性能的影响。结果扫描电镜观察显示,苯胺/海泡石复合材料具有纤维状结构。电化学测试及硫酸铜点滴试验表明,当海泡石/苯胺投料比为6:10、聚苯胺/海泡石复合材料用量为0.2%、磷酸浓度为0.1 mol/L时,其腐蚀电流密度为1.013X10~(-6)A/cm~2,腐蚀电位为-0.385V,极化电阻为14 350.8?,耐硫酸铜腐蚀时间为275 s,防腐效果最佳。结论当海泡石/苯胺投料比为6:10、聚苯胺/海泡石复合材料用量为0.2%、磷酸浓度为0.1 mol/L时,水性聚苯胺/海泡石/丙烯酸乳液复合防腐涂层对马口铁具有最佳的防腐效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号