首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
核壳结构SrFe12O19NiFe2O4复合纳米粉体的吸波性能   总被引:1,自引:0,他引:1       下载免费PDF全文
以Fe(NO3)3、 Ni(NO3)2和Sr(NO3)2为主要原料, 通过两步柠檬酸盐溶胶-凝胶法, 制备出核-壳结构SrFe12O19-NiFe2O4磁性纳米复合粉体。采用XRD、 TEM、 VSM及矢量网络分析仪对合成的粉体的结构、 形貌及吸波性能进行了分析研究。结果表明, 复合粉体的相结构与NiFe2O4含量有关, 当SrFe12O19与NiFe2O4的质量比为1∶2、 烧结温度为1050℃时, 复合纳米粉体的相与NiFe2O4接近, 核-壳结构SrFe12O19-NiFe2O4纳米复合粉体的饱和磁化强度(Ms)(51.4 emu/g)比单体SrFe12O19纳米粉体 (42.6 emu/g)的大; 但矫顽力(Hc) (336 Oe)比单体SrFe12O19纳米粉体的小, 在SrFe12O19 与NiFe2O4的矫顽力5395~160 Oe之间。在频率为8~18 GHz范围内, 微波吸收逐渐增强, 当频率为12 GHz时, SrFe12O19-NiFe2O4纳米复合粉体的微波吸收达到最大值-9.7 dB, 是一种性能优良的吸波材料。   相似文献   

2.
颜建辉  康蓉  唐幸  汪异  邱敬文 《复合材料学报》2021,38(11):3747-3756
多相Mo-12Si-8.5B合金是一种很有应用前景的高温结构材料,为了同时提高Mo-12Si-8.5B合金的强度和韧性,提出了采用纳米ZrO2(Y2O3)强韧化具有双峰晶粒度分布Mo-12Si-8.5B复合材料的方法。首先采用溶胶-凝胶和高温氢还原法制备了纳米Mo-ZrO2(Y2O3)复合粉末,然后以纳米Mo-ZrO2(Y2O3)粉末和微米Mo粉末为原材料,采用放电等离子烧结(SPS)技术制备了具有双峰晶粒度分布的Mo-12Si-8.5B-ZrO2(Y2O3)复合材料。结果表明,随着ZrO2(Y2O3)含量的增加,制备的Mo-ZrO2(Y2O3)纳米粉末的粒度和烧结体相对致密度均逐渐减小,ZrO2(Y2O3)含量小于2.5wt%时,烧结体的相对致密度均大于98.1%。当ZrO2(Y2O3)含量为1.5wt%和2.5wt%时,复合材料具有较高的硬度(9.76~9.98 GPa),抗弯强度(672~678 MPa)和断裂韧性(12.68~12.82 MPa·m1/2)。Mo-12Si-8.5B-ZrO2(Y2O3)复合材料中Mo晶粒细化、粗细Mo晶粒的晶界强化和纳米ZrO2(Y2O3)颗粒第二相强化是提高硬度和抗弯强度主要原因;复合材料中粗晶粒Mo和纳米ZrO2(Y2O3)有助于断裂韧性的提高,材料的增韧机制主要是裂纹偏转和裂纹桥接。   相似文献   

3.
有机太阳电池(OSCs)中,温和的界面材料制备工艺对于拓宽材料适用范围和提高器件能量转换效率(PCE)具有重要作用.本文提出了简便易行的In2O3和Ga2O3电子收集层的制备方法,即旋涂In(acac)3和Ga(acac)3异丙醇前驱体溶液并结合低温热退火.在基于PM6:Y6的OSCs中引入In2O3和Ga2O3电子收集层,得到了性能优异的器件, PCE分别达到16.17和16.01.对比研究发现, In2O3的功函数WF为4.58 eV,这比WF为5.06 eV的Ga2O3更有利于与ITO电极形成欧姆接触,因此基于前者的器件开路电压更高.此外,电化学阻抗谱EIS的研究进一步揭示了In2O3和Ga2O3对器件内部电荷转移过程的影响及其性能差异的由来:In2O3的串联电阻损耗虽然较低,但Ga2O3的复合电阻较高,所以一定程度上提高了基于Ga2O3的器件的填充因子,进而补偿了其串联电阻的损失.本论文的对比研究发现, In2O3和Ga2O3都是OSCs优异的电子收集层.  相似文献   

4.
以凹凸棒土(ATP)为载体, 以Ce(NO3)3·6H2O和La(NO3)3·6H2O为原料, 以C6H12N4(HMT)为沉淀剂, 采用均相沉淀法制备了不同铈镧比的CeO2-La2O3/ATP(Ce:La=9:1~3:7, 摩尔比, 下同)复合材料。用TG-DSC、 TEM、 XRD和FTIR对所制备复合材料的微观结构和形貌进行表征, 并分别考察不同铈镧比和H2O2添加量对酸性品红模拟废水脱色降解的影响。结果表明, 当Ce:La=5:5时, CeO2-La2O3固溶体颗粒均匀分布在ATP表面, 颗粒尺寸为5~10 nm。随着铈镧摩尔比的增加, 酸性品红的降解率呈先增后减的趋势, 且当Ce:La=5:5、 H2O2为10 mL、 酸性品红浓度为100 mg/L时, 降解效果最好, 300 min后的最大降解率达82%。  相似文献   

5.
周宏  张玉霞  范勇  陈昊 《复合材料学报》2014,31(5):1142-1147
采用水热法制备片状纳米Al2O3,经过偶联剂改性后与环氧树脂复合,通过溶液混合法制备了不同填充量的片状纳米Al2O3/环氧树脂复合材料,研究了片状纳米Al2O3用量对片状纳米Al2O3/环氧树脂复合材料介电性能和热性能的影响,利用SEM对复合材料的断口形貌进行了表征。结果表明: 片状纳米Al2O3在环氧树脂基体中分散良好;随着片状纳米Al2O3填充量的增加,复合材料的起始热分解温度升高、介电强度增大,当片状纳米Al2O3的填充量为7wt%时,复合材料的介电强度为 29.58 kV/mm,比纯环氧树脂的介电强度提高了30%;复合材料的介电常数(3.8~4.5)和介电损耗(0.015)比纯环氧树脂稍有增大,但仍维持在较好的介电性能范围内。  相似文献   

6.
作为20世纪90年代兴起的一类连续陶瓷纤维增强陶瓷基复合材料,连续氧化铝纤维增韧氧化铝(Al2O3f/Al2O3)复合材料已经发展为与Cf/SiC、SiCf/SiC等非氧化物复合材料并列的陶瓷基复合材料。以多孔基体实现基体裂纹偏转成为Al2O3f/Al2O3复合材料主要的增韧设计方法,形成的多孔Al2O3f/Al2O3复合材料具有优异的抗氧化性能和高温力学性能,可在高温富氧、富含水汽的中等载荷工况中长时服役,是未来重要的热结构材料。经过近30年的发展,多孔Al2O3f/Al2O3复合材料已被应用于航空发动机、燃气轮机等热端部件。本文综述了多孔Al2O3f...  相似文献   

7.
采用一种具有芯-壳结构的复合纳米纤维增强铝合金复合材料,可以在提高抗拉强度的同时增加塑性。通过真空热压烧结技术制备了Al2O3@Y3Al5O12复合纳米短纤维增强2024铝合金复合材料。研究了纤维添加质量分数对复合材料致密度、硬度、抗拉强度及延伸率的影响;并探究了芯-壳结构在复合材料增韧中的作用。结果表明:Al2O3@Y3Al5O12纳米短纤维具有良好的分散性,在超声分散及机械搅拌混粉后均匀吸附在铝合金颗粒表面,无分层及团聚现象;经热压烧结后,Al2O3@Y3Al5O12纳米短纤维以短纤维形态均匀分散在铝合金基体内,少量添加Al2O3@Y3Al5O12纳米短纤维起到了桥联和孔洞填充作用,使复合材料致密度和硬度提高;添加质量分数为1wt%时,抗拉强度和延伸率取得最大值,由铝合金的249.3 MPa、2.9%增加到299.1 MPa、4.3%。Al2O3@Y3Al5O12纳米短纤维的添加可以细化晶粒,阻碍裂纹扩展,且在拔出/断过程中Al2O3@Y3Al5O12纳米短纤维芯-壳结构的塑性变形起到了增强增韧作用。   相似文献   

8.
纳米双金属氧化物作为除氟剂具有广泛的应用前景。以六水合硝酸铈和六水合硝酸镧为原料,聚丙烯腈(PAN)为模板,通过静电纺丝技术与煅烧相结合制备La2O3-CeO2纳米纤维,利用TEM、SEM-EDS、BET、FTIR和XRD对La2O3-CeO2纳米纤维的形貌和结构进行表征。探究了La2O3-CeO2纳米纤维对氟离子吸附性能,研究了pH、吸附质(F-)初始浓度、吸附时间、La2O3-CeO2纳米纤维投加量和共存阴离子等对除氟效率的影响。研究结果表明,La2O3-CeO2纳米纤维的比表面积为31.04 m2·g-1。pH为3时,La2O3-CeO2纳米纤维的...  相似文献   

9.
姜娟  倪娜  牛强 《化工新型材料》2023,(12):218-223+230
采用溶胶-凝胶法和静电纺丝技术制备了柔性钇铝石榴石-氧化铝(YAG-Al2O3)纳米纤维膜,然后使用尿素包埋法将石墨相氮化碳(g-C3N4)引入到纤维膜孔隙中,制备了自支撑光催化降解钇铝石榴石-氧化铝/氮化碳(YAG-Al2O3/C3N4)复合材料,表征了材料的形貌结构和力学行为,并研究了其在亚甲基蓝污水处理中的可见光催化降解性能。结果表明,YAG-Al2O3纳米纤维膜具有优异的柔韧性,YAG-Al2O3/C3N4复合材料在厚度方向具有良好的弹性,两者均为自支撑材料。100min内复合材料对亚甲基蓝的降解率可达96%以上,循环3次后降解率仍保持在94%左右。催化反应动力学符合Langmuir-Hinshelwood(L-H)模型,说明复合材料具有长期稳定且高效的催化降解效果。  相似文献   

10.
采用电沉积技术将α-Fe2O3均匀负载在静电纺丝炭纳米纤维上,制备α-Fe2O3/炭纳米纤维复合材料。利用扫描电镜(SEM)、X射线衍射仪(XRD)以及物理吸附对复合材料进行形貌和结构分析,并通过恒电流充放电、循环伏安、交流阻抗技术考察其作为超级电容器电极材料的电化学性能。结果表明:α-Fe2O3/炭纳米纤维(α-Fe2O3/CNF-3)复合材料相比单纯炭纳米纤维(CNF)有着更丰富的介孔结构,有利于离子和电子的低电阻传输。同时,α-Fe2O3/CNF-3复合电极材料结合了双电层电容和赝电容的优良性能,在电流密度为1A/g下,电解液为6mol/L KOH时,其比电容值可达330.1F/g,是炭纳米纤维电极的3.76倍,并且经过8000次循环后仍能保持91.45%,具有较好的稳定性。  相似文献   

11.
通过热水解法成功制备出了形貌均一的ZnO/In2O3异质结光催化材料, 采用场发射扫描电子显微镜(FESEM)、X射线衍射仪(XRD)以及透射电子显微镜(TEM)对样品的形貌及结构进行表征。结果表明: ZnO/In2O3异质结是由直径约200~300 nm、厚度约40~60 nm的六边形纳米片镶嵌着In2O3纳米小颗粒组成。对比纯ZnO、纯In2O3和该光催化材料对罗丹明B(RhB)的可见光降解效率, 发现ZnO/In2O3异质结光催化材料对RhB具有较高的光催化效率, 其原因是窄带系半导体In2O3能够有效地吸收可见光, 当ZnO与In2O3 形成异质结时, In2O3能带上被可见光激发的电子会迁移到ZnO的导带上, 而光激发的空穴仍保留在In2O3价带, 这样有助于光生电子和空穴的分离, 降低其复合几率, 从而有效地提高了ZnO的光催化效率。  相似文献   

12.
采用分步加热固相法成功制备了纯度较高的各向同性负热膨胀材料ZrW2O8 。将ZrW2O8 与ZrO2 按一定比例混合, 在1200 ℃烧结24 h 制备了热膨胀系数可控的ZrW2O8 / ZrO2 复合材料。研究结果表明, 通过改变ZrW2O8 的体积分数, ZrW2O8 / ZrO2 复合材料的热膨胀系数可以控制为负、正或零。当ZrW2O8 的体积分数为37 %时, 复合材料的热膨胀系数接近零。为了得到致密的ZrW2O8 / ZrO2 复合陶瓷, 采用Al2O3 作为烧结剂, 取得了较好的效果。0. 35 wt % Al2O3 的加入可以在不影响复合材料热膨胀性能的前提下, 显著提高复合材料的致密度。   相似文献   

13.
以CaO-B2O3-SiO2(CBS)玻璃粉体和Al2O3陶瓷粉体为原料,通过在CBS与Al2O3的质量比固定为50:50的玻璃-陶瓷复合材料中添加适量的Bi2O3作为烧结助熔剂,探讨了Bi2O3助熔剂对CBS/Al2O3复合材料的烧结性能、介电性能、抗弯强度和热膨胀系数的影响规律.研究表明:Bi2O3助熔剂能通过降低CBS玻璃的转变温度和黏度促进CBS/Al2O3复合材料的致密化进程,于880 ℃下烧结即能获得结构较致密、气孔较少的CBS/Al2O3复合材料.然而,过量添加Bi2O3将使玻璃的黏度过低,从而恶化CBS/Al2O3复合材料的烧结性能、介电性能及抗弯强度.当Bi2O3的添加量为CBS/Al2O3复合材料的1.5wt%时,于880 ℃下烧结即能获得最为致密的CBS/Al2O3复合材料,密度为2.82 g·cm-3,这一材料具有良好的介电性能(介电常数为7.21,介电损耗为1.06×10-3),抗弯强度为190.34 MPa,0~300 ℃的热膨胀系数为3.52×10-6 K-1.  相似文献   

14.
马江微  李怡敏  朱亚武  雍辉  崔燕  孙志刚  胡季帆 《功能材料》2022,(6):6151-6158+6176
Cl2作为消毒剂重要的工业原料,在当前疫情肆虐的情况下其需求量日益增大,而Cl2是一种有毒气体,常见的金属氧化物半导体气敏材料对低浓度Cl2响应低,因此开发对微量泄露灵敏的Cl2传感材料具有重要意义。采用一种简便的NaBH4还原方法,对脱脂棉模板法合成的In2O3微管材料进行处理,在室温条件下成功制备了具有丰富氧空位浓度的In2O3微管材料。利用XRD、SEM、XPS和EPR表征手段,考察了该方法对其晶体结构、微观形貌和氧空位的影响,结果表明,该方法只提高In2O3材料中的氧空位浓度而不对晶体结构和微观形貌产生影响。由气敏性能测试结果可知,NaBH4处理后的In2O3微管比未处理的In2O3微管对相同低浓度Cl2的响应...  相似文献   

15.
两种半导体材料合成的复合材料由于电子亲合能和带隙宽度差形成了同型异质或异型异质结,利用异质结界面形成的费米能级效应可以提高界面载流子迁移率,从而有效改善气体传感器的气敏性能。本文采用自行设计开发的多层同轴静电纺丝装置,构筑了同轴异质复合纳米纤维In2O3/SnO2。所构筑的同轴异质复合纤维In2O3/SnO2外层较大的In2O3纳米颗粒附着在内层较小SnO2纳米颗粒表面,形成中空的分级纤维结构。同轴异质复合纤维In2O3/SnO2中由于存在大量的N-N同型异质结界面,电子迁移率增强,表面活性增强,吸附氧含量增加,对甲醛表现出良好的气敏性能。在250℃环境下,同轴复合纤维In2O3/SnO2气敏元件对50×10-6的甲醛响应为14.12,分别...  相似文献   

16.
分别采用Cu(NO3)2、H2O2和KMnO4对椰壳活性炭进行改性,研究了活性炭微观结构、表面化学性质变化,及其对SO2、NOx等酸性腐蚀性气氛的吸附性能。结果表明,Cu(NO3)2改性活性炭比表面积显著降低,平均孔径有所下降,Cu(NO3)2微晶分布于活性炭表面及微观孔道内,表面以碳、铜、氧和氮元素为主。H2O2改性活性炭比表面积有所增加,平均孔径减小,H2O2与活性炭表层反应后起到刻蚀效应,引入丰富的微纳孔道结构,使其表面含氧官能团增加,氧元素含量提升。KMnO4改性活性炭比表面积和平均孔径略微降低,KMnO4与活性炭表层反应后含氧官能团增加,反应产物附着于活性炭表面,改变其微观结构。三种方式改性的活性炭对SO  相似文献   

17.
采用刷涂法在Al2O3基多孔隔热材料表面制备Al2O3/MoSi2涂层,涂层以硅溶胶作为粘结剂,纳米Al2O3与Al2O3纤维作为耐高温组分,MoSi2为高发射率组分。通过SEM、XRD对Al2O3/MoSi2涂层微观表面结构、物相组成进行分析。研究纳米Al2O3与Al2O3纤维的质量比和MoSi2含量对Al2O3/MoSi2涂层耐温性能的影响,并对Al2O3/MoSi2涂层的抗热震性能、发射率进行表征。结果表明,当纳米Al2O3与Al2O3纤维的质量比小于1∶1时,热考核后Al2O3/MoSi2涂层表面无裂纹产生;当纳米Al2O3与Al2O3纤维的质量比在1∶2~1∶4之间时,Al2O3/MoSi2涂层中的纤维网络较完整。MoSi2的含量为20%时,Al2O3/MoSi2涂层抗热震实验循环25次后表面保持完好,热考核后在2.5~25 μm波段的平均发射率在0.85左右,具有较高的发射率。   相似文献   

18.
生物附着是水环境使用设施污损的主要原因,在材料表面形成有机物或微生物膜是生物附着的第一步,如能抑制初期有机物膜的形成则可有效抑制进一步的附着生长,从而减少生物污损对水环境设施的危害。有机物膜主要由蛋白质及多糖组成,将具有抑制多糖和蛋白质附着功能的材料应用于设施表面,可阻止污损发生。由此,本工作以GO/In2O3复合材料为填料、PAZFP树脂乳液为基体,制备了一种具有微/纳米表面结构和低表面能的新型有机/无机复合涂料——氧化石墨烯/氧化铟/两性离子丙烯酸氟化聚合物(GO/In2O3/PAZFP)复合膜,并对其抗蛋白性能进行了研究。研究结果表明,In2O3纳米颗粒为立方结构,粒度在20~60 nm之间,均匀地负载在GO上。GO具有较大的比表面积,为In2O3颗粒的加载提供了大量的活性位点,从而阻止了In2O3颗粒的团聚,降低了In2O3  相似文献   

19.
采用球磨-转喷微注相结合的新工艺制备纳米Al2O3颗粒(Al2O3p)/Al(7075)复合材料,设计一种转喷微注装置,该装置能将连续、微量的纳米Al2O3p注入到Al熔体中。观察纳米Al2O3增强相对Al(7075)基体合金材料微观组织的影响,并测试Al(7075)基体和纳米Al2O3p/Al(7075)复合材料的磨损特性。对纳米Al2O3p/Al(7075)复合材料和Al(7075)基体在不同载荷(15 N、25 N和35 N)下的磨损特性进行对比研究。结果表明:球磨-转喷微注法制备的纳米Al2O3p/Al(7075)复合材料晶粒较小,且增强相在基体中分布均匀且结合良好;随着载荷增大,纳米Al2O3p/Al(7075)复合材料磨损量的上升趋势慢于Al(7075)基体。载荷为35 N时,纳米Al2O3p/Al(7075)复合材料的磨损量较Al(7075)基体少,磨屑尺寸较小,其耐磨性能明显改善,这主要得益于纳米Al2O3p的支撑作用和材料的细晶强化作用。   相似文献   

20.
通过球磨分散法和熔融共混法制得纳米Sb2O3/溴化环氧树脂-聚丙烯(BEO-PP)阻燃复合材料试样。采用XRD、DSC、拉伸和冲击性能测试,研究了纳米Sb2O3/BEO-PP阻燃复合材料的力学性能及其增强机制。研究结果表明:采用球磨法改性后的纳米Sb2O3颗粒在PP基体中的分散性和黏结性能得到明显改善;纳米Sb2O3颗粒的加入可改善PP基复合材料的强韧性;随着纳米Sb2O3质量分数的升高,纳米Sb2O3/BEO-PP复合材料的力学性能呈现出先升后降的趋势,PP基体的结晶度逐渐增高;当纳米Sb2O3颗粒添加量为2wt%时,纳米Sb2O3/BEO-PP复合材料表现出优异的综合性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号