首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 868 毫秒
1.
The surfaces of amorphous Ni-18P, Ni-IOCr-20P, Ni-9Mo-19P and Ni-5W-18P alloys immersed or anodically polarized in 1 M HCl solution were analyzed in connection with their corrosion and anodic behavior. All alloys were more corrosion-resistant than crystalline nickel metal because of formation of phosphate-containing surface films on the Ni-18P, Ni-9Mo-19P and Ni-5W-18P alloys and because of spontaneous passivation due to formation of passive hydrated chromium oxyhydroxide film on the Ni-10Cr-20P alloy. The latter alloy was stable up to the transpassive region of chromium although intrusion of phosphate in the film was responsible for the higher passive current density in comparison to the amorphous Fe-Cr-13P-7C alloy of the same chromium content. The formation of thick porous phosphate films containing nickel, and molybdenum or tungsten by anodic polarization was not effective in passivating the Ni-18P, Ni-9Mo-19P and Ni-5W-18P alloys, and they suffered pitting corrosion by anodic polarization.  相似文献   

2.
In the last decade, new titanium alloys have been developed in different areas of dentistry, such as Ti6Al7Nb, Ti6Al2Nb1Ta1Nb, and Ti5Al2.5Fe. The aim of this study was to compare the Ti6Al7Nb, Ti6Al2Nb1Ta1Nb, Ti5Al2.5Fe, and Ti6Al4V alloys with the commercial titanium, regarding the corrosion resistance in artificial saliva. In the electrochemical estimations the polarization data are converted into instantaneous corrosion rate values (Icorr). The passivation properties were comparable for the four alloys. The EIS spectra are best fitted using an equivalent circuit (EC), which corresponds to the model of a two‐layer structure for the passive film. High impedance values (in the order of 106 Ω cm2) were obtained from medium to low frequencies for all materials suggesting high corrosion resistance in artificial saliva. The electrochemical and corrosion behavior of Ti6Al4V is not affected on substituting vanadium with niobium, iron, molybdenum, and tantalum.  相似文献   

3.
《Corrosion Science》1996,38(3):469-485
The corrosion resistance of arc-melted Ni10TaP alloys containing 0, 10 and 20 at% phosphorus in 12 M HCl solution at 30 °C was investigated. The alloys containing 0 and 10 at% phosphorus suffer severe corrosion. The addition of 20 at% phosphorus to crystalline Ni10Ta alloy results in a three-orders-of-magnitude decrease in the corrosion rate. The open circuit potentials of the Ni10Ta alloys containing 0 and 10 at% phosphorus stay almost constant in the active region of nickel, while the open circuit potential of the Ni10Ta20P alloy increases almost linearly in the initial 2 h. The Ni10Ta alloy consists of intermetallic Ni8Ta and immersion in 12 M HCl results in faceting dissolution. Ni10Ta10P alloy is composed of major Ni8Ta and Ni3P phases and minor Ni2Ta and Ni2P phases. Immersion of Ni10Ta10P alloy leads to preferential dissolution of the Ni8Ta phase and to continuous thickening of the corrosion product film consisting mostly of tantalum as cations. Ni 10Ta20P alloy consists of Ni2Ta, Ni3P, Ni2P and NiP phases. Immersion of Ni10Ta20P alloy gives rise to initial increase in elemental phosphorus on the surface as a result of selective dissolution of nickel and selective oxidation of tantalum. The formation of elemental phosphorus with a high cathodic activity is responsible for the initial ennoblement of the open circuit potential and for the formation of the passive film in which tantalum is highly concentrated. The higher corrosion resistance of Ni10Ta20P alloy than Ni10Ta10P alloy is attributable to the formation of the Ni2Ta phase with a higher tantalum content than the Ni8Ta phase which is the readily corroded major intermetallic phase in the Ni10Ta10P alloy.  相似文献   

4.
Two new Fe-Cr system alloys,Fe-20Cr-43Ni-10P(mass%)and Fe-20Cr-20Ni-8P-5Si-2Mo(mass%),have been developed as substitutes for the expensive Ni-based brazing filler metal used in brazing exhaust gas recirculation coolers.The microstructures and melting properties of the alloys were analyzed by electron probe X-ray microanalyzer and differential scanning calorimetry.The electrochemical characteristics of the alloys were investigated by potentiodynamic polarization testing in an electrolyte solution made in accordance with the standards of the Automobile Manufacturers Association of Germany.Furthermore,the corrosion behaviors of the alloys were investigated by constant-potential polarization testing and surface characterization.It is found that both alloys are composed of solid-solution phases and phosphide phases.The solid-solution phases serve as the anode,and the phosphide phases serve as the cathode in the corrosion reaction for both alloys.Fe-20Cr-43Ni-10 P exhibits galvanic corrosion on the entire surface.In contrast,Fe-20Cr-20Ni-8P-5Si-2Mo is attacked at a few localized areas so that the cavities form on the surface.The corrosion potential(E_(corr)) is lower than that of Ni-29Cr-6P-4Si(mass%)for both alloys.This means that the Fe-Cr system alloys are more easily corroded than Ni-29Cr-6P-4Si.The corrosion rate and corrosion resistance cannot be investigated by the corrosion current density(i_(corr)) and polarization resistance(R_p),respectively,because of localized corrosion of the two alloys.  相似文献   

5.
Passivity of alloys containing corrosion-resistant elements were reviewed. Chromium and valve metals except aluminum form stable oxyhydroxide films even in aggressive hydrochloric acids. Molybdenum forms a passive MoO2 film in the active region of stainless steels and hence decreases the active dissolution current. In the passive region of transition metals and valve metals, molybdenum is generally in the transpassive state and dissolved. However, if the outer oxyhydroxide film is stable the inner MoO2 film is protected by the outer oxyhydroxide film and the MoO2 film acts as the effective barrier against diffusion of matters through the film. Thus the passive current density of 30Cr-2Mo ferritic stainless steel is more than two orders of magnitude lower than that of 30Cr steel without molybdenum in 1 M HCl.  相似文献   

6.
The corrosion resistance of Ti–Mo (5, 10, 15 and 25 wt% molybdenum) alloys in 5–25% sulphuric acid was evaluated. The Ti–Mo alloys offered a better corrosion resistance than commercially pure titanium (CP‐Ti). The higher impedance values, higher phase angle maximum, ability to reach the phase angle maximum at relatively lower frequencies, ability to exhibit a constant phase angle maximum over a wider range of frequencies, higher phase angle values at 0.01 Hz, have confirmed the formation of a stable passive oxide film on Ti–Mo alloys. The study recommends the use of Ti–Mo alloys, particularly Ti–25Mo alloy, as a suitable material of construction for sulphuric acid medium.  相似文献   

7.
Our recent results of the sulfidation and oxidation behavior of sputter-deposited Al- and Cr-refractory metal alloys at high temperatures are reviewed, and the roles of the aluminum and chromium in sulfidation and oxidation of these alloys are discussed in this paper. Niobium, molybdenum and tantalum are highly resistant to sulfide corrosion. Their sulfidation resistance is further enhanced by alloying with aluminum. Although Cr-refractory metal alloys also reveal high sulfidation resistance, their sulfidation rates do not become lower than those of the corresponding refractory metals. The sulfide scales formed on the Al-refractory metal and Cr-refractory metal alloys consist of two layers, comprising an outer Al2S3 or Cr2S3 layer and an inner refractory metal disulfide layer. The inner layer has a columnar structure, and the growth direction of the refractory metal disulfides is perpendicular to 0 0 1 direction. Intercalation of Al3+ ions into NbS2 and a decrease in the sulfur activity at the outer layer/inner layer interface by the presence of the Al2S3 layer are probably responsible for the improvement of the sulfidation resistance by the addition of aluminum. The oxidation resistance of niobium and tantalum is improved more effectively by the addition of chromium rather than aluminum. Although preferential oxidation of chromium does not occur, an outer protective Cr2O3 layer in the oxide scales is formed on Cr-rich Cr-Nb and Cr-Ta alloys due to outward diffusion of Cr3+ ions. In contrast, continuous alumina layer cannot be formed on the Al-Nb and Al-Ta alloys, and the alloys reveal a pest phenomenon at 1073 K, and at higher temperatures rapid oxidation occurs. Concerning the oxidation of molybdenum, the addition of aluminum, which has higher activity for oxidation than chromium, is more effective in improving the oxidation resistance of molybdenum than chromium addition, since preferential oxidation of aluminum suppresses the formation of volatile molybdenum oxide.  相似文献   

8.
The corrosion of vanadium and vanadium-base binary alloys, VCr, VAl, VFe, and VMo, in oxygen-saturated sodium was studied. A ternary oxide containing sodium and vanadium was detected in the corrosion product formed on vanadium. The formation rate of the corrosion product followed a linear rate law above 450°C. From examination of alloying additions on the corrosion of vanadium, molybdenum was found to improve considerably the corrosion resistance of vanadium to the liquid sodium. In particular a V50wt%Mo alloy was observed to corrode only very slightly in sodium. The corrosion resistance of the VMo alloys was considered to be caused by molybdenum enrichment of the surface layers as the corrosion proceeded.  相似文献   

9.
ABSTRACT

The microstructure and corrosion behaviour of the metal waste form (MWF) alloys based on ferritic steel with Zr content in the range of 3–15?wt-% were investigated. The MWF alloys are composed of α-Fe and Fe-Zr phases and with the increase of Zr content, α-Fe phase gradually decreases and the relative content of Fe–Zr intermetallic phase also increases. TEM and XRD confirmed the presence of Fe2Zr and Fe23Zr6 intermetallics. Potentiodynamic polarisation curves showed The MWF alloys exhibited passivation behaviour in the simulated Kalpakkam (KGW) and Rajasthan ground water (RGW) media. Electrochemical impedance spectra revealed improved passive film stability in RGW than in KGW which is related to the formation of more stable adherent insoluble passive film in RGW. Higher Zr containing MWF alloy exhibited higher corrosion resistance than lower Zr containing MWF alloys. The relative content of Fe–Zr intermetallics is attributed for the corrosion resistance of The MWF alloys.  相似文献   

10.
Corrosion behaviour of sputter-deposited Mg–Zr alloys was examined in a borate buffer solution of pH 8.7. XRD measurements showed that the alloys were supersaturated with Zr. The addition of 29 at.% Zr or more was very effective in increasing the corrosion resistance of Mg by more than four orders of magnitude. XPS analysis of spontaneously formed passive films revealed that the passive film consisted of double oxyhydroxide composed of enriched tetravalent Zr and divalent Mg cations. The enrichment of Zr cations in the passive film is responsible for the enhanced corrosion resistance of Mg–Zr alloys.  相似文献   

11.
The corrosion behavior of WC–TiC–Ni cemented carbides with the additions of molybdenum was investigated in 1 M H2SO4 and 1 M HCl solutions utilizing potentiodynamic polarization, long-term immersion tests and surface analytical techniques. The results show that the Mo additions can enhance the corrosion resistance of WC–TiC–Ni hardmetals owing to the formation of new (Ti, W, Mo)C phase based on TiC. Pseudopassivity was observed in the polarization curves of WC–Ni and WC–TiC–Ni hardmetals in HCl. However, the additions of molybdenum can make WC–TiC–Ni hardmetals passivated visibly in curves at 600 mV–1000 mV and enhance the pitting corrosion resistance due to the formation of MoO3 film. In addition, all nickel based alloys show the typical passivation behavior in H2SO4 caused by the formation of NiSO4, NiWO4 and continuous metal oxide films.  相似文献   

12.
Amorphous WTi alloys were successfully prepared by DC magnetron sputtering in a wide composition range. The sputter deposited WTi alloys thus prepared were spontaneously passive, and their corrosion rates were lower than tungsten and about two orders of magnitude lower than titanium in 6 M HCl solution open to air at 30 °C. XPS analysis showed that tungsten was enriched in both the passive films and underlying alloy surfaces in 6 M HCl solution. The passive films on the WTi alloys were composed of a double oxyhydroxide of tetravalent tungsten and titanium ions. The formation of the double oxyhydroxide film seems responsible for high corrosion resistance of the alloys in comparison with alloying constituents in 6 M HCl at 30 °C.  相似文献   

13.
The stress corrosion cracking behavior in caustic solutions (200 g/l sodium hydroxide, 10 g/l sodium chloride) of three austenitic (18Cr-10Ni-2.5Mo, 20Cr-25Ni-4.5Mo, 27Cr-31Ni-3.5Mo) and three duplex (23Cr-4Ni, 22Cr-5Ni-3Mo, 25Cr-7Ni-4Mo-N) stainless steels was examined. U-bend and Slow Strain Rate (SSR) tests were performed at 200–250°C. The negative influence of nickel in the lower range content for the 18Cr-10Ni-2.5Mo and 20Cr-25Ni-4.5Mo has been shown; when the nickel content is significantly increased (>30%), as in the case of the steel 27Cr-31Ni-3.5Mo, an increase of SCC resistance has been detected. The negative effect of molybdenum, mainly on the behaviour of duplex stainless steels, has also been evidenced. The duplex stainless steels show better caustic SCC resistance than austenitic stainless steels type 18Cr-10Ni-2.5Mo and 20Cr-25Ni-4.5Mo. The best behaviour has been found for the less-alloyed steel 23Cr-4Ni.  相似文献   

14.
Cast alloys of nominal compositions Ni-36Al, Ni-36Al-5Co, Ni-36Al-5Pt, Ni-36Al-5Co-5Pt, and Ni-36Al-5Cr (at.%) were tested under Type I (900 °C) hot corrosion conditions in order to determine the influence of various elements commonly found in diffusion aluminide coatings on the resistance to this mode of attack. Chromium was found to be the most effective element in conferring hot corrosion resistance, but improvements in performance were also found with the addition of Co and/or Pt. Experimental evidence is presented which suggests that each of these elements increase the hot corrosion resistance of β-NiAl alloys primarily by increasing their ability to rapidly form a thermally grown Al2O3 scale and to heal this scale in the event of damage. Potential explanations for this enhanced scale formation and healing capability are discussed.  相似文献   

15.
The corrosion resistance of niobium, tantalum and Nb-20, 40, 60 and 80 wt% Ta alloys in boiling 20, 40, 60 and 80 wt% H2SO4 solutions is studied using the mass-loss technique. The corrosion rates of all materials increase with acid concentration and diminish initially with time. After nearly 200 h, the corrosion rates stabilize due to superficial oxide formation. The corrosion resistance increases with tantalum content. A preferential dissolution of niobium from the Nb-Ta alloys is noted. Recrystallization heat treatments reduce slightly the corrosion rates. The anodized materials are more corrosion resistant than the untreated ones during the first 200 h, but behave similarly for longer exposure times.  相似文献   

16.
ABSTRACT

The present work is concerned with the corrosion resistance of AA6061 aluminium alloys with tantalum films in hydrochloric acid- and chloride-containing solutions. The tantalum films were produced by magnetron sputtering at different sputtering times (50 and 120 min). The films’ morphologies were observed by metallographic microscope and scanning electron microscope with energy dispersion spectrum. It is shown in this paper that with longer sputtering time, the film’s thickness increased, but it became less dense. The corrosion behaviour was characterised by potentiodynamic polarisation, scanning electrochemical microscopy analysis and an immersion experiment. These investigations revealed that the corrosion resistance of AA6061 aluminium alloy in chloride ions medium and hydrochloric acid was significantly improved after deposition of a tantalum film. Specifically, samples deposited for 50 min exhibited the best corrosion resistance in hydrochloric acid, while samples deposited for 120 min showed best corrosion resistance in sodium chloride solution.  相似文献   

17.
The effect of molybdenum additions 5, 10, 15, and 20 wt. %, on the sulfidation behavior of Ni-20Cr, and the effect of chromium additions, 5, 10, 15, and 20 wt.%, on the sulfidation of Ni-20Mo were studied in pure sulfur vapor at 700°C. In general, the alloys followed a linear or near-linear rate law, the sulfidation rate of Ni-20Mo being slightly less than that of Ni-20Cr. The alloys having the lowest ternary addition, e.g., Ni-Cr-5Mo and Ni-20Mo-5Cr. exhibited the most rapid reaction rates. The highest alloying additions of 20 wt.% had no appreciable benefit on reaction rates. Scale structures were complex but generally consisted of several layers. The outer layer was always NiS1.03, although both binaries formed Ni3S2 within the NiS1.03. An inner layer of Cr3S4 existed in which there was considerable dissolved molybdenum. A thin, intermediate layer of Cr2S3 generally formed between the Cr3S4 and the outer nickel sulfide. An innermost layer of MoS2 formed on all alloys containing more than 10 wt. % Mo, and a second phase of Mo2S3 formed within the MoS2 on Ni-20Mo. Although the scales changed with alloy composition, no significant changes in reaction rate were observed. Notable differences in both scale structure and reaction kinetics between this study and previous studies were apparent. The differences and possible reaction mechanisms are discussed.  相似文献   

18.
Not only excellent high temperature mechanical properties are needed to establish a new gas turbine alloy, but also a very good oxidation behaviour, together with good resistance to so‐called “hot corrosion”. This paper describes experimental studies on the corrosion behaviour in hot gases and combustion products of a new Ni‐Cr‐Ta alloy 2100 GT in comparison to the commercially established alloys 230, C‐263 and 617. Alloy 2100 GT is a newly developed cobalt, tungsten and molybdenum free Ni‐base superalloy of Krupp VDM. It contains as major alloying elements 25 wt.‐% chromium, 8 wt.‐% tantalum, 2.4–3 wt.‐% aluminium and 0.2–0.3 wt.‐% carbon. High temperature strength is achieved by the addition of tantalum, resulting in significantly increased solid solution strengthening, carbide hardening due to the formation of primary precipitated tantalum carbides, and γ′‐precipitation hardening by aluminium and tantalum. The isothermal oxidation tests showed that the parabolic rate constant of alloy 2100 GT is similar to that of alumina‐forming alloys. This is achieved by the remarkably high aluminium content for a wrought alloy. Additions of yttrium improve the spalling resistance under thermal cycling by the formation of very thin and tightly adherent oxide layers. No deleterious effect caused by the addition of tantalum could be found. In the cyclic oxidation tests performed at temperatures between 700°C and 1200°C alloy 2100 GT showed the lowest mass change of all the alloys investigated. Na2SO4 has been found to be a dominant component of alkali salt deposits on gas turbine components at elevated temperatures. Combustion gases contain SO2 because of the impure nature of the fuel. To investigate the hot corrosion behaviour of alloy 2100 GT, tests were performed with salt deposits containing 0.1 mol Na2SO4 and a test gas comprising air and 0.1% SO2. Test temperatures were 600°C, 700°C, 850°C and 950°C. Alloy 2100 GT exhibited the best performance at all test temperatures. It was the only alloy which did not suffer any fluxing of the oxide layer and only slight internal sulphidation was observed.  相似文献   

19.
76Ni-24P amorphous alloys have been electrodeposited from solutions containing sodium lauryl sulphate (SLS) and triton-X 100 (TX-100) to improve the surface quality of the specimens. Corrosion behaviour of electrodeposited amorphous alloys in sulphate and chloride solutions at 25°C has been studied by potential-time decay, linear polarization resistance and potentiodynamic techniques. Anodic polarization curves show that the specimens exhibit mild passivity at potentials between approximately ?200 mV and 200 mV (SCE) and dissolve transpassively above 200 mV (SCE). The sulphate solution was found to increase the dissolution of the samples treated by the surfactants during the substrate brass plating. The nonanionic surfactant increases the corrosion current by 10 times compared to the anionic one which enhances the current by 400 times; the interpretation was based on the enhanced dissolution of the microcrystals of the specimens in the sulphate solution and to the steric hindrance of the surfactants. In addition, the alloys are more resistant to chlorides due to the formation of a phosphate/hypophosphite film which protects the surface from dissolution.  相似文献   

20.
The changes in the structure, phase composition, and physicomechanical properties of titanium-free maraging alloys based on the Fe-15–23% Ni-(Co, Mo, V) system after heating to the single-phase α field and two-phase α + γ field have been studied. It has been established that the strengthening of N15K10M5F5-type maraging alloys is caused by the precipitation of fine particles (20–50 nm) of intermetallic phases such as the fcc Ni3(Mo, V) phase and the Fe2(Mo, V) Laves phase (in the N23K9M6 alloys, with the formation of the Ni3Mo and Fe2Mo phases). It has been shown that the two-step aging of the N15K10M5F5 alloy leads to an additional strengthening by 200–250 MPa and provides the achievement of the ultimate tensile strength σu=2400?2500 MPa. The high-strength N15K10M5F5 maraging alloys are obtained with two levels of the coercive force H c: (a) semihard maraging alloys with H c=20?50 Oe and σu=2100?2400 MPa; and (b) hard magnetic maraging alloys with H c=180?230 Oe and σu=1500?1800 MPa. The high-strength titanium-free N15K10M5F5 and N23K9M6 maraging alloys possess many properties characteristic of structural, elastic, and magnetic alloys and are thus multifunctional materials. These alloys can be used for advanced high-tech articles and as high-strength magnetic materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号