首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
密封元器件中氢气的产生及控制   总被引:1,自引:0,他引:1  
文章通过研究表明,密封元器件内部气氛中的氢气对镓、砷化物或硅器件的可靠性有长期的影响,钛氢化合物的形成可以造成GaAs器件物理变形,进而导致器件失效。试验分析表明,密封元器件内部氢气主要来自封装金属基底中吸附的气体,这些气体在热应力条件下扩散到腔体内部。试验证明在元器件封装前对封装材料进行排气处理,可以有效地将材料中的氢气释放。通过对可伐合金在不同条件排放的氢气含量的测量与分析,进一步验证了腔体内部氢气的来源,并得出随着热应力时间的延长,氢气的排放量有增长趋势的结论。  相似文献   

2.
为了降低微电子机械系统(MEMS)加速度器件的热机械噪声,提高信噪比,使之能应用于石油勘探和地震监测中,对一种三明治式电容加速度传感器的器件级真空封装工艺进行了研究。这种器件级真空封装方法采用可编程高真空封装设备和MEMS工业中常用的材料、工艺,可适用于不同尺寸或布局的MEMS芯片。利用该封装方法,对一种采用自停止腐蚀工艺在中间质量块键合层上制作出2个对称"V"型槽的三明治式电容加速度计进行了真空封装,并对封装后的器件进行性能测试。结果表明,该加速度计在有吸气剂的情况下,品质因子(Q)可达到76,理论热机械噪声为0.026μg/槡Hz,腔体内部压强小于13 Pa,He气细漏检测漏率低于3×10-10Pa.m3/s,氟油粗漏无气泡,满足地震监测要求。  相似文献   

3.
封装腔体内氢气含量控制   总被引:1,自引:0,他引:1  
目前,对密封腔体内的水汽、二氧化碳、氧气含量的研究比较多,内部水汽含量控制在≤5 000 ppm、氧气控制在≤2 000 ppm、二氧化碳控制在≤4 000 ppm、氦气控制在≤1 000 ppm的密封工艺技术已解决[9],氢气含量控制的研究则未见报道。对于一些气密性要求高的封装应用领域,还需要控制氢气含量,如MEMS、GaAs电路等。分析了平行缝焊、Au80Sn20合金封帽的导电胶、合金烧结的器件的内部氢气含量,并分析了125℃168 h和125℃1 000 h贮存前后氢气含量的变化情况;在试验的基础上,提出了氢气的主要来源和针对性的工艺措施,并取得了期望的结果:密封器件经过125℃、1 000 h贮存后的氢气含量也能控制在≤4 000 ppm。  相似文献   

4.
钢基体(如10#钢)外壳在混合集成电路中大量使用,该外壳生产时,会接触或产生大量氢气。研究表明,密封电子器件中的氢会导致砷化镓、氮化镓等半导体芯片失效,影响器件长期可靠性。本文研究了电子封装用钢基体外壳内部的氢含量,分析了当前典型制备工艺下氢含量的产生原因,对比了不同镀种外壳的氢含量差异,并讨论了产生差异的原因。针对烧结及镀覆工序展开除氢试验,对经过低温/高温激发的封盖密封外壳,进行了氢含量测试,并获得了氢含量规律。研究结果为外壳制备提供了建议,也为外壳后续使用提供了依据。  相似文献   

5.
高真空场发射三极显示器的制作   总被引:3,自引:3,他引:0  
三极结构的场致发射显示器是一种新型的真空平板显示装置,高真空的实现与维持是确保显示器件正常工作的必要条件.通过采用低熔点玻璃粉烧结工艺和玻璃定位片装置,实现了场致发射显示器的高真空平板封装.从器件封装结构、器件烧结、器件排气和器件烤消等方面进行了工艺改进.综合采用这套技术,已经研发出三极结构的、具有高真空度的碳纳米管阴极场致发射显示器样品.  相似文献   

6.
极度微型化的微/纳真空器件要求专门的封装技术。论文综述了适用于微/纳真空器件封装的真空键合和电极互连技术,同时系统分析了一些相关技术,包括实现真空获得与维持的微型、可集成真空泵技术和非蒸散、薄膜吸气剂技术,监测器件工作环境的真空度测量技术,以及检测器件封装的真空检漏技术等。分析结果对微/纳真空器件的设计与工艺实现提供了有益参考。  相似文献   

7.
MEMS器件的真空封装是整个工艺过程中的难点,封装的质量决定着整个器件的质量和使用寿命。现有的封装工艺,封装后器件内部真空度不能有效保持,是需要在真空下工作的器件的瓶颈。随着吸气剂的广泛使用,使MEMS器件的真空度保持能力大大提高,但现有的封装工艺设备不能满足吸气剂的激活条件。分析了空气阻尼对MEMS器件品质因数的影响,提出一种将现有的真空共晶设备的改进方法,使之能应用于使用吸气剂的MEMS器件的真空封装工艺。  相似文献   

8.
利用传统的电阻焊技术实现了MEMS真空封装,制定了基于熔焊的工艺路线,进行了成品率实验,研究了影响真空封装器件内部真空度的各种因素,并对真空封装器件封装强度进行了检测。  相似文献   

9.
三极场发射显示器件的发光优化制作   总被引:1,自引:0,他引:1  
结合低熔点玻璃粉密封工艺,应用钙钠平板玻璃分别形成阴极面板、阳极面板和封装面板,研发了三极结构的场致发射显示器件。阳极面板作为相互连通的发射腔和排气腔的公共端,用于产生器件显示图像;具有高平整度的阳极面板处于真空环境中,不会出现形变现象,确保了发光图像的显示均匀性。封装面板上不存在任何电极。整体封装器件制作工艺稳定、可靠且成本低廉,具有较高的显示亮度、良好的栅控特性和图形显示功能。  相似文献   

10.
《电子与信息学报》2015,37(9):2282-2286
为了降低传感器的驱动电压,提高该器件的品质因数和信噪比,该文研究封装材料和工艺对真空封装性能的影响,针对一种微机电系统(MEMS)谐振式微型电场敏感结构芯片,采用独特的共晶键合技术,实现该传感器的芯片级真空封装。实验结果表明,该传感器封装后的品质因数达到了30727.4,是常压封装的500倍;该封装器件具有更低的驱动电压,只需要直流分量100 mV和交流分量60 mVp-p,与常压测试时相比,分别只有原来的1/200和1/16。  相似文献   

11.
采用超细95%Al2O3粉料、高温烧结、陶瓷激光精密加工工艺制成的管壳,可满足毫米波器件的封装要求。  相似文献   

12.
在电子组装工艺实施的过程中,注意对潮湿敏感器件(moisture-setlsitive devices简称MSD)的追踪正愈来愈受到人们的重视。在以往的电子组装过程中,这些可能都不是问题。当表面贴装器件(SMD)首次成为能够满足设计师和装配工程师的要求,而大批量投入到电子产品生产之中的时候,器件的封装是严格密闭的,为此它不会受到大气中潮湿气体的影响,潮气一般不会  相似文献   

13.
采用超细95%Al2O3粉料、高温烧结、陶瓷激光精密加工工艺制成的管壳,可满足毫米波器件的封装要求。  相似文献   

14.
利用微波等离子化学气相沉积法,制备出类球状微米金刚石聚晶薄膜作为场发射阴极材料。通过采用低熔点玻璃粉烧结工艺,从器件封装、器件烧结、器件排气和器件烤消等方面进行了探索和创新,实现了场致发射荧光管的高真空封装。综合采用这套技术,已经研发出的真空场致发射荧光管,在5.45 V/μm电场下,光的亮度达到了11 000 cd/m2。为将来设计制作矩阵寻址场发射平板显示器件奠定了基础。  相似文献   

15.
高温功率半导体器件连接的低温烧结技术   总被引:1,自引:0,他引:1  
综述了功率电子器件和模块的连接和封装工艺,介绍了粉末致密烧结技术和用于电子封装的现状,对纳米银金属焊膏烧结技术进行了讨论。研究表明,纳米银可有效降低烧结温度,提高设备的高温稳定性、导热性、导电性、机械强度、抗疲劳性等。由于银的熔点较高,这种新技术可应用于高温功率器件的封装。  相似文献   

16.
刘远志  卢肖 《电子工艺技术》2011,32(5):297-299,302
Cu镀Au腔体是微波器件常用封装载体之一。在目前应用中,Cu镀Au腔体微波器件的气密性封装一直是工程化技术难题,大幅影响了微波器件的可靠性和使用寿命。对基于Cu镀Au腔体的微波器件进行了气密性封装研究,探讨了Cu镀Au腔体实现气密性封装可能的工艺路线。通过比较激光封焊和真空钎焊等传统气密性封装工艺方法,提出了"小孔密封...  相似文献   

17.
介绍了MEMS器件封装技术发展的历史、作用及现状;概要阐述了本课题组研究的可体内降解的高分子材料新型给药微结构;最后,针对这种高分子材料给药微器件自身的特点,提出了一种新型微器件的真空热融封装技术。  相似文献   

18.
文章介绍了低温玻璃熔封的基本原理,分析了黑瓷封装器件在封装过程中缺陷产生的原因。以日本801型链式烧结炉为例,通过烧结工艺及过程,论述了预烘、烧结气氛、封盖温度、保温时间、升降温速率以及其他因素对黑瓷封装熔封工艺的影响,根据这些影响黑瓷封装熔封工艺的因素进行细化工艺。最后,总结出器件缺陷产生的几种常见形式,并针对性地提出了具体调节黑瓷封装熔封工艺的一些技,亍和方法,以及这些技巧和方法的适用范围,以便掌握黑瓷封盖的基本规律,在以后生产中提高产品可靠性和合格率。  相似文献   

19.
针对氢气作为气密性封装外壳中常见的内部气氛对电子元器件的性能、寿命及可靠性的破坏性影响,通过对封装外壳的材料及制造工艺进行分析,提出确定外壳内部氢气含量温度条件和时间条件的原则和方法,指导气密封装外壳内氢气含量的测试。  相似文献   

20.
本文详细介绍了一种高频三腔体金属外壳的研制,该外壳是声表面波器件专用封装的典型之作:三腔体单面密封结构,上腔体内腔的钎焊卡槽用来装配隔板,从而满足电磁屏蔽要求;采用金锡焊工艺钎焊高频引线组件,确保了信号输入输出端的高频阻抗要求;平行缝焊工艺设计,确保产品气密封接;镀层满足抗盐雾要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号