首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
臭氧活性炭深度处理工艺除藻效能研究   总被引:2,自引:2,他引:0  
通过中试除藻试验,研究了臭氧活性炭深度处理工艺的除藻效能。结果表明,经过预臭 氧化和常规工艺处理后,深度处理工艺可再去除67%的含藻量。工艺参数:臭氧投加量2 mg/L,接 触时间15 min,活性炭滤池滤速10 m/h,停留时间12 min。探讨了预臭氧化和深度处理两种组合工 艺的除藻机理和影响因素。  相似文献   

2.
通过运行炭层空气曝气活性炭-石英砂双层滤池(简称曝气炭砂滤池)生产性示范工程,并与无曝气炭砂滤池及砂滤池进行对比,研究了曝气炭砂滤池作为快滤池时对水中氨氮及亚硝酸盐氮的去除性能。结果表明,曝气炭砂滤池可将氨氮浓度低于2.5mg/L的进水处理至0.5mg/L以下,且进水氨氮低于1.5mg/L时不需曝气,其去除效果显著优于普通炭砂滤池和石英砂滤池;曝气炭砂滤池亦可有效去除亚硝酸盐氮。用曝气炭砂滤池替代石英砂滤池是水厂提升氨氮去除能力的一种可行的滤池改造方式。  相似文献   

3.
为了提出适合某多水源水厂新建工程的工艺,进行了5组不同流程的中试研究。结果表明,对有机物去除率最高的是活性炭滤池,CODMn和UV254的去除率分别是56.8%~66.3%和70.8%~73.3%;对浊度去除最有效的是砂滤池,去除率为89.5%~97.1%,超滤出水浊度稳定在0.11~0.12NTU;对臭味物质2-MIB的去除中,活性炭滤池发挥了至关重要的作用,预臭氧对2-MIB也有较好的去除效果,去除率为52.5%。"预臭氧-常规工艺-臭氧活性炭-超滤"流程与不投加前后臭氧的"常规工艺-活性炭-超滤"流程对污染物的去除规律类似。"砂滤-炭滤""炭滤-砂滤"和"砂滤-超滤"3组流程对比显示各自均存在一些不足。综合考虑"预臭氧-常规工艺-臭氧活性炭-超滤"是最适合该新建水厂的工艺流程。  相似文献   

4.
为研究南水北调中线工程通水后汉江水质的变化及评价沿线某水厂臭氧-活性炭深度处理工艺运行效果,研究分析了2013至2021年汉江水质变化趋势,检测水厂各工艺段出水常规水质指标,并考察了2022年1至4月间调控PAC、NaClO和预、主臭氧投加量对出水水质的影响。结果表明,南水北调通水后一个月,汉江水pH、色度、CODMn、菌落总数较通水前的同期分别升高了5.6%、57.1%、38.4%、162.1%,此后这些指标与通水前基本无显著性差异,但2019至2021年CODMn和菌落总数指标有升高的趋势。增设主臭氧-活性炭工艺运行4年后对CODMn、UV254、NH3-N的去除率比常规处理提高了12.2%、18.5%、8.3%,对浑浊度、TOC去除效果提高不明显。活性炭运行4年后,碘吸附值及亚甲蓝吸附值分别下降了82.0%及82.2%,达到生物活性炭的成熟阶段。日常运行可采用炭滤池出水0.30 NTU所对应的二级预警作为限值控制,保障出水浑浊度的稳定。调控预、主臭氧投加量及比例,可使出厂...  相似文献   

5.
臭氧-生物活性炭滤池运行及水厂成本变化研究   总被引:1,自引:1,他引:0  
代荣  汪利军 《给水排水》2006,32(10):12-19
处理规模10万m3/d的杭州南星水厂是钱塘江水源水厂首座采用臭氧-生物活性炭工艺(O3-BAC)进行深度处理的水厂.通过对O3-BAC处理效果的各影响因素进行生产性研究,确定适宜的余臭氧浓度为0.15~0.25 mg/L,BAC滤池水力负荷可大于设计值10 m3/(m2·h),运行周期设定为10 d左右,加臭氧有助于提高O3-BAC对CODMn的去除效果,同时推断在秋冬季水温较低(7~16℃)的情况下,BAC滤池的生物挂膜时间为运行后101~105 d.原水CODMn<4.59 mg/L时,采用常规处理即可将出水CODMn控制在2 mg/L以下.实施臭氧预处理和O3-BAC深度处理后,水厂总运行成本增加0.199元/m3.  相似文献   

6.
臭氧-活性炭工艺在东北寒冷地区的应用较少。某净水厂工程项目位于黑龙江省,针对原水水温低、色度较高及微污染问题,采用了臭氧-活性炭工艺,其主要设计参数:预臭氧投加量为0.5~1.5mg/L,主臭氧投加量为1.5~2.5mg/L,絮凝池停留时间为20min,沉淀池上升流速为1.63mm/s,V型滤池滤速为6.8m/h,活性炭池滤速为5.5m/h。净水厂投产2年后的水质检测表明,臭氧-活性炭工艺在冬季取得了良好的运行效果,出水水质达到国标要求。  相似文献   

7.
臭氧-生物活性炭-纳滤膜深度处理饮用水试验研究   总被引:1,自引:0,他引:1  
采用臭氧-生物活性炭-纳滤工艺去除城市管网供水中的污染物,使其达到饮用净水水质标准.研究表明:在臭氧投加量为3~4 mg/L,接触时间8~10 min,生物活性炭罐滤速3~4 m/s的运行条件下,臭氧-生物活性炭预处理能够大量去除原水中的污染物,保证纳滤工艺的正常运行;纳滤膜在操作压力0.7~0.8 MPa,膜通量为27.3 L/(m2·h)的条件下,既能去除无机污染物,又能够保证一些对人体有益的离子不被完全截留;且能够有效去除原水中的TOC、AOC、CODMMn、色度、浊度及细菌等,确保饮用水的安全性和生物稳定性.  相似文献   

8.
南水北调的应急工程是从河北四水库调水进京,四水库水源水质与密云水库水质相差较大.为了保证河北水进京后水厂工艺运行的稳定性,根据水厂现行工艺(混凝-沉淀-煤砂过滤-活性炭过滤)增加预臭氧在河北黄壁庄水库进行适应性研究.试验结果表明:在投加臭氧1.5~2.6 mg/L后炭出水基本无味;试验条件为:臭氧浓度0.4 mg/L,接触时间8 min时,预臭氧能够将剑水蚤杀死去除;预臭氧后系统对有机物去除效果较好,且沉后藻类去除率达到80%以上,煤滤池出水藻类低于2万个/L;中试系统煤滤池出水和炭滤池出水溴酸盐浓度均小于5 μg/L,因此臭氧氧化后不存在溴酸盐副产物超标的风险.同时,建议在河北水进京前测定水中MIB浓度,适时调整臭氧投加量,在有必要的情况下考虑增加粉末活性炭预吸附.  相似文献   

9.
依托武汉某水厂开展中试考察不同炭砂配比对水中污染物的去除效果,探究不同冲洗参数对冲洗效果的影响。结果表明,最佳炭层和砂层厚度为800 mm和500 mm,最佳冲洗方式为16 L/(m2·s)气冲3 min、间隔2 min、13 L/(m2·s)水冲9 min。1#炭砂滤柱对氨和高锰酸盐指数的平均去除率分别为46.99%和54.81%,其对有机物的去除效果明显优于砂滤柱,当进水浊度低于2 NTU时,1#炭砂滤柱浊度平均去除率可达85.67%,出水满足厂区滤后水浊度指标的要求。采用最佳炭砂配比和冲洗方式,1#炭砂滤柱滤后水浊度和高锰酸盐指数去除率可达89.56%和66.27%。结合上述中试结果,并通过对实际工程中砂滤池及炭砂滤池进行调研,形成一套完整的炭砂滤池工程改造方案,为应对供水突发事件时砂滤池改造为炭砂滤池提供一定的理论指导。  相似文献   

10.
炭砂滤池去除有机物特性的研究   总被引:1,自引:0,他引:1  
通过现场中试,研究活性炭—石英砂双层滤池(简称炭砂滤池)作为快滤池使用时对水中有机物的去除特性。结果表明:炭砂滤池代替普通砂滤池可有效去除水中的有机物,尤其对中低分子质量有机物去除效果较好。炭砂滤池依靠滤料截留、活性炭吸附和生物降解作用去除CODMn。试验期间炭砂滤池对CODMn去除稳定,平均去除率达50%。炭砂滤池主要依靠活性炭吸附去除UV254,稳定情况下对UV254的去除率在40%~50%。炭砂滤池对于有机物有较强的抗冲击负荷能力,滤速、反冲洗以及水力波动对其去除CODMn和UV254影响不大。  相似文献   

11.
预臭氧通常位于净水处理工艺的最前端,其对后续工艺的协同和优化作用值得探讨。通过中试,研究预臭氧在臭氧生物活性炭深度工艺处理太湖水中的作用。试验表明,预臭氧具有助凝效果,但对混凝去除有机物的帮助有限。研究发现,预臭氧可有效提升砂滤去除可生物降解有机物(BDOC)的效果,并与臭氧投加量有密切关系。预臭氧投加量为1.5 mg/L时,常规处理(混凝沉淀-砂滤)去除有机物的效果最好。预臭氧还可促进生物活性炭去除BDOC。在本试验中,最佳的预臭氧投加量对整个深度工艺去除有机物为1.5 mg/L,砂滤起到关键的作用。  相似文献   

12.
为评估双氧水在给水厂深度处理改造中的应用潜力,依托中试装置分析了臭氧/双氧水/活性炭工艺中氧化剂投加量和投加比对工艺处理效能的影响,结果表明:与臭氧/活性炭工艺相比,臭氧/双氧水/活性炭工艺对中试装置进水中的CODMn、土臭素、2-MIB、甲砜霉素和氟甲砜霉素均有更高的去除率,且对于水中富里酸类物质、溶解性微生物代谢产物及自生源组分的削减幅度更大,试验条件下的最优工况为O3投加量1.0 mg/L,O3/H2O2质量比2∶1。在水厂常规的臭氧投加规模下(0.5~1.5 mg/L),臭氧/双氧水/活性炭工艺出水基本没有双氧水残留的问题。  相似文献   

13.
以天津市某废水处理厂提标改造为基础,建立了1套活性炭回流旋流分离的活性炭吸附-混凝深度处理技术,探究污染物去除机理,系统开展中试研究了药剂投加量、回流量、反洗周期等对污染物的去除效果,中试运行结果表明在PAC 34mg/L,活性炭40mg/L,PAM 3~4mg/L,药剂成本0.3元/t的情况下,能达到《城镇污水处理厂污染物排放标准》(DB 12/599—2015)一级A排放标准,在活性炭回流比超过50%的情况下能一定程度改善处理效果,强化了对亲水性小分子污染物去除,提高处理效率。  相似文献   

14.
利用中试系统研究了北方某水库水质条件下,较低投量的臭氧预氧化对常规饮用水处理工艺运行效果的影响。研究发现预臭氧的加入提高了常规工艺对CODMn、UV254、三卤甲烷生成势(THMFP)的总去除率。同时,能够明显改善滤池过滤性能,低臭氧投量(≤1.0mg/L)条件下,砂滤周期可从22h延长至48h左右,且投量0.5mg/L以下时,延长效率较高。预臭氧的加入强化了不同粒径范围内颗粒物在混凝沉淀、砂滤各工艺段的去除,是砂滤运行周期得到延长的原因。  相似文献   

15.
采用“臭氧-微量粉末活性炭-曝气生物滤池”组合工艺,考察了苏南某污水处理厂二级出水深度处理的运行效果及作为回用水的可行性。结果表明,当投加的臭氧和粉末活性炭质量浓度分别为25mg/L和20mg/L,曝气生物滤池的水力停留时间为6h,气水比为3∶1时,组合工艺出水的ρ(COD)和ρ(NH3-N)平均值分别为49mg/L和0.28mg/L,出水平均色度为7,平均脱色率达90%,满足回用水水质要求。检测发现,臭氧氧化和粉末活性炭吸附对可溶性微生物产物有较高的去除率。  相似文献   

16.
应用新型悬浮填料曝气生物滤池对广州市某污水处理厂的实际污水进行中试试验,控制滤速分别为6m/h、8m/h、10m/h、12m/h,以考察工艺在不同滤速下对氨氮,总氮和COD的去除能力。试验结果表明,在悬浮填料生物滤池滤速为10m/h、升流式悬浮填料柱曝气量为1m~3/h、降流式悬浮填料柱到升流式悬浮填料曝气柱回流比为100%、砂滤池滤速为7m~3/h的工况下,可达到最优处理效果。进水氨氮、总氮、COD分别为7.40~15.05mg/L、14.02~22.42mg/L、165~225mg/L,砂滤出水的氨氮、总氮、COD分别低于0.42mg/L、10mg/L和20mg/L,平均去除率分别达到96.88%、55.92%和91.47%。中试系统运行稳定,出水水质指标达到《城镇污水处理厂污染物排放标准》一级A标准。  相似文献   

17.
臭氧—平板陶瓷膜新型净水工艺中试研究   总被引:1,自引:0,他引:1  
为应对饮用水源受到的有机物和氨氮的复合污染,对混凝—臭氧/陶瓷膜—活性炭池新型净水工艺进行中试研究。结果表明,臭氧可以在线控制膜污染,臭氧投加量2mg/L,间歇提高臭氧投加量至5mg/L时,陶瓷膜跨膜压差在通量100L/(m2·h)下运行5d后增长小于2kPa。臭氧促进了陶瓷膜对颗粒物的去除,投加臭氧时膜出水中大于2μm粒径的颗粒数低于10个/mL。新型净水工艺能有效去除受污染原水中的有机物和氨氮,工艺对UV254的去除率为65%~95%,CODMn去除率为71%~98%,出水CODMn低于0.5mg/L;原水氨氮3.5mg/L时,工艺出水氨氮0.1mg/L,且无亚硝态氮积累,氨氮基本转化为硝态氮。此外,新型净水工艺对卤乙酸生成势的去除率高于85%,大大提高了工艺出水的安全性。实现了传统工艺与深度处理工艺的叠加集成,对水厂升级改造具有重要意义。  相似文献   

18.
饮用水处理工艺去除两种典型内分泌干扰物的性能   总被引:4,自引:0,他引:4  
研究了水中两种典型内分泌干扰物———双酚A(BPA)和邻苯二甲酸二甲酯(DMP)在饮用水常规处理、臭氧活性炭和微曝气活性炭深度处理中试工艺中的去除性能。研究发现,饮用水常规处理工艺对BPA和DMP的去除效果有限,进水浓度为200~300μg/L条件下经过混凝、沉淀和砂滤后,BPA和DMP的去除率分别仅为25.38%和13.29%。臭氧活性炭深度处理工艺能有效去除BPA和DMP,但二者在该工艺中的去除特性有所不同:水中BPA经过臭氧氧化后几乎被全部去除,后续的生物活性炭处理单元作用较小;但臭氧氧化仅可部分去除DMP,大部分靠后续生物活性炭柱去除。微曝气活性炭深度处理工艺也能有效去除BPA和DMP,对二者的去除主要靠微曝气活性炭柱的作用,其效果略优于臭氧投加量为0条件下的臭氧活性炭柱,这说明微曝气活性炭柱存在较多的特定降解菌。通过静态吸附试验发现,臭氧活性炭柱和微曝气活性炭柱内活性炭对BPA和DMP的最大吸附容量均远小于新炭,同时臭氧活性炭柱内活性炭吸附容量略高于微曝气活性炭柱。  相似文献   

19.
系统地研究了臭氧和二氧化氯复合预氧化的除锰效能及特性,活性炭对预二氧化氯副产物亚氯酸盐的去除效果。利用CFD软件对预氧化进行优化设计,并利用试验验证模拟方法的有效性和准确性。结果表明在处理含锰量较高的原水时,采用臭氧和二氧化氯复合投加除锰效果要优于单独使用二氧化氯预氧化,臭氧投加30min后再投加二氧化氯,臭氧最佳投加量为0.5mg/L。同时炭砂滤池对亚氯酸盐也具有很好的去除作用。  相似文献   

20.
在酒仙桥污水处理厂建立200m3/d的示范工程进行高品质再生水的生产,在二级出水强化脱氮除磷的基础上,采用臭氧(O3)-活性炭(GAC)-反硝化生物滤池(DNBF)工艺进行试验研究。经过13个月的试验证明,该工艺由于O3在脱色除臭基础上,能够强化活性炭滤池的生物多样性及活性,从而使出水CODCr能够长期稳定在30mg/L以下,NH3-N小于1mg/L。在外加碳源CH3COONa条件下,系统经DNBF后出水TN小于2mg/L。同时试验发现,为了实现经济节能及良好的污水再生效果,DNBF和O3单元在流程中的位置设置非常关键,有别于污水二级处理工艺。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号