首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The aim of this work is to investigate the effect of the addition of Cu, Cd, Ni, Pb and Zn nitrate salts on the compressive strength of a CEM I Portland cement. Concentrations of 0.018 or 0.18 mol/kg of cement of each trace element were tested. After 2 days age, the compressive strength was reduced by various extents by addition of heavy metals, with the exception of Ni. This difference is due to a delay in tricalcium silicate hydration (C3S) as shown by an isothermal calorimetry test. Trace elements also influence the 28-days compressive strength, whereas the measured degree of hydration of these cement pastes is the same. As shown by scanning electron microscopy and X-ray diffraction, Cu and Pb are predominantly absorbed in the calcium silicate hydrate gel (C–S–H) while Cd, Ni and Zn are mainly precipitated as hydroxides within the intergranular porosity. Thus, trace elements precipitated as hydroxides have only a slight effect on the compressive strength. In contrast, Cu and Pb cause an increase in mechanical resistance by changing the C–S–H nanometric assembly and its density.  相似文献   

2.
To clarify the strength improvement mechanism of gap-graded blended cements with a high amount of supplementary cementitious materials, phase composition of hardened gap-graded blended cement pastes was quantified, and compared with those of Portland cement paste and reference blended cement (prepared by co-grinding) paste. The results show that the gap-graded blended cement pastes containing only 25% cement clinker by mass have comparable amount of gel products and porosity with Portland cement paste at all tested ages. For gap-graded blended cement pastes, about 40% of the total gel products can be attributed to the hydration of fine blast furnace slag, and the main un-hydrated component is coarse fly ash, corresponding to un-hydrated cement clinker in Portland cement paste. Further, pore size refinement is much more pronounced in gap-graded blended cement pastes, attributing to high initial packing density of cement paste (grain size refinement) and significant hydration of BFS.  相似文献   

3.
This research investigates the optimization of calcium chloride content on the bioactivity and mechanical properties of white Portland cement. Calcium chloride was used as an addition of White Portland cement at 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10% by weight. Calcium chloride was dissolved in sterile distilled water and blended with White Portland cement using a water to cement ratio of 0.5. Analysis of the bioactivity and pH of white Portland cement pastes with calcium chloride added at various amounts was carried out in simulated body fluid. Setting time, density, compressive strength and volume of permeable voids were also investigated. The characteristics of cement pastes were examined by X-ray diffractometer and scanning electron microscope linked to an energy-dispersive X-ray analyzer. The result indicated that the addition of calcium chloride could accelerate the hydration of white Portland cement, resulting in a decrease in setting time and an increase in early strength of the pastes. The compressive strength of all cement pastes with added calcium chloride was higher than that of the pure cement paste, and the addition of calcium chloride at 8 wt.% led to achieving the highest strength. Furthermore, white Portland cement pastes both with and without calcium chloride showed well-established bioactivity with respect to the formation of a hydroxyapatite layer on the material within 7 days following immersion in simulated body fluid; white Portland cement paste with added 3%CaCl2 exhibited the best bioactivity.  相似文献   

4.
The immobilization of Co(Ⅱ) in various cement matrices was investigated by using the solidification/stabilization(S/S) technique.The different cement pastes used in this study were ordinary Portland cement in absence and presence of water reducing-and water repelling-admixtures as well as blended cement with kaolin.Two ratios of Co(Ⅱ) were used(0.5% and 1.0% by weight of the solid binder).The hydration characteristics of the used cement pastes were tested via the determination of the combined water content,phase composition and compressive strength at different time intervals up to 180 d.The degree of immobilization of the added heavy metal ions was evaluated by determining the leached ion concentration after time intervals extended up to 180 d.The leachability experiments were carried out by using two modes:the static and the semi-dynamic leaching processes.It was noticed that the concentration of the leached Co2+ ions in the static mode of leachability was lower than the solubility of its hydroxide in all the investigated cement pastes.  相似文献   

5.
A hydration model for Portland cement pastes modified with nano-silica in partial substitution is formulated based on the nucleation growth process from microstructural investigations over time. The model is calibrated against thermogravimetry, X-ray diffraction and calorimetry data for four different substitution rates from 0 to 12 wt% and is validated by backscattered electron microscopy. Finite element based compressive strength predictions using representative volume element analysis of the nano modified cement pastes agreed with the experimental values. The model predictions indicate that a rate of 8 wt% is the optimum replacement level of cement by nano-silica leading to a high density matrix promoting a maximum mechanical strength.  相似文献   

6.
This research studied the influence of individual heavy metal on the hydration reactions of major cement clinker phases in order to investigate the performance of cement based stabilization/solidification (S/S) system. Tricalcium silicate (C3S) and tricalcium aluminate (C3A) had been mixed with individual heavy metal hydroxide including Zn(OH)2, Pb(OH)2 and Cu(OH)2, respectively. The influences of these heavy metal hydroxides on the hydration of C3S and C3A have been characterized by X-ray diffraction (XRD) and differential scanning calorimetry-thermogravimetry (DSC-TG). A mixture of Zn(OH)2, Pb(OH)2 and Cu(OH)2 was blended with Portland cement (PC) and evaluated through compressive strength and dynamic leach test. XRD and DSC-TG data show that all the heavy metal hydroxides (Zn(OH)2, Pb(OH)2 and Cu(OH)2) have detrimental effects on the hydration of C3A, but only Zn(OH)2 does to the C3S at early curing ages which can completely inhibit the hydration of C3S due to the formation of CaO(Zn(OH)2).2H2O. Cu6Al2O8CO(3).12H2O, Pb2Al4O4(CO3)(4).7H2O and Zn6Al2O8CO(3).12H2O are formed in all the samples containing C3A in the presence of metal hydroxides. After adding CaSO4 into C3A, the detrimental effect of heavy metals increases due to the coating effect of both calcium aluminate sulphates and heavy metal aluminate carbonates. The influence of heavy metal hydroxide on the hydration of C3S and C3A can be used to predict the S/S performance of Portland cement.  相似文献   

7.
Conduction calorimetry was applied to an investigation of the early hydration of ordinary Portland cement (OPC)/high alumina cement (HAC) pastes. Three different rate of heat-evolution profiles were observed, depending on the HAC/OPC ratio. Relevant processes affecting heat development include ettringite formation, HAC and OPC hydration. Results from SEM examination and X-ray diffraction studies are also presented. An acceleration of OPC hydration was observed in pastes containing less than 12.5% HAC. A similar acceleration effect on HAC hydration was also obtained with the addition of OPC. A large amount of ettringite was formed and OPC hydration delayed in the pastes containing 15%–30% HAC. The latter could be one of the factors attributed to poor strength development in these HAC/OPC systems. Early hydration mechanisms of OPC/HAC systems are also discussed. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

8.
This investigation elucidates the pozzolanic behavior of waste glass blended cement (WGBC) paste used in thin film transistor liquid crystal displays (TFT-LCD). X-ray diffraction (XRD) results demonstrate that the TFT-LCD waste glass was entirely non-crystalline. The leaching concentrations of the clay and TFT-LCD waste glass all met the current regulatory thresholds of the Taiwan EPA. The pozzolanic strength activity indices of TFT-LCD waste glass at 28 days and 56 days were 89% and 92%, respectively. Accordingly, this material can be regarded as a good pozzolanic material. The amount of TFT-LCD waste glass that is mixed into WGBC pastes affects the strength of the pastes. The strength of the paste clearly declined as the amount of TFT-LCD waste glass increased. XRD patterns indicated that the major difference was the presence of hydrates of calcium silicate (CSH, 2 theta=32.1 degrees), aluminate and aluminosilicate, which was present in WGBC pastes. Portland cement may have increased the alkalinity of the solution and induced the decomposition of the glass phase network. WGBC pastes that contained 40% TFT-LCD waste glass have markedly lower gel/space ratios and exhibit less degree of hydration than ordinary Portland cement (OPC) pastes. The most satisfactory characteristics of the strength were observed when the mixing ratio of the TFT-LCD waste glass was 10%.  相似文献   

9.
This study discusses the thin film transistor liquid crystal display (TFT-LCD) waste glass-blended cement (WGBC) pastes. It presents their compressive strength, their products of hydration and solid silicates changes. The samples were subjected to Fourier transformation infrared spectroscopy, differential thermal and thermo-gravimetric analysis and (29)Si magnetic angle spinning/nuclear magnetic resonance. The experimental XRD results demonstrated the speciation of the TFT-LCD waste glass, and that the major component was SiO(2). At 40% substitution of TFT-LCD waste glass, at 28 days and 56 days, the compressive strength was 35% and 30% lower, respectively, than that of the Portland cement paste. The intensity of the Ca(OH)(2) band at 3,710 cm(-1) in the 56-day hydrated products of the WGBC pastes that contain TFT-LCD waste glass exhibit comparatively weak peaks suggesting that much Ca(OH)(2) during hydration was consumed. Later, the CSH contents of the WGBC pastes increased, revealing that liberated Ca(OH)(2) was consumed in pozzolanic reactions.  相似文献   

10.
The hydrothermal reactivity of silica sand was studied using cement kiln dust (CKD) as an activator in addition to the portland cement fraction of El-Karnak cement (a blend of ordinary Portland cement and ground sand).Autoclaved El-Karnak cement pastes were studied at pressures of 0.507,1.013 and 01.520 MPa of saturated steam with respect to their compressive strength,kinetics of hydrothermal reaction and the phase composition of the formed hydrates.The role of CKD in affecting the physicochemical and mechanical properties of El-Karnak cement pastes was studied by autoclaving of several pastes containing 5,7.5,10 and 20% CKD at a pressure of 1.013 MPa of saturated steam.CKD was added either as a raw CKD (unwashed) or after washing with water (washed CKD).The results of these physicochemical studies obtained could be related as much as possible to the role of CKD (raw or washed) in affecting the hydrothermal reactivity of silica sand in El-Karnak cement pastes.  相似文献   

11.
This study aims at investigating the possibility of using dust, collected in air filters during the melting of mineral wool raw materials (mineral wool cupola dust) as an additive for Portland cement. It was found that the investigated dust mainly consists of quartz, periclase, albite, dolomite, and the amorphous phase. The main impurities are halite and sylvite. The investigated additive was additionally milled and prepared as a microfiller. The results showed that the cupola dust additive increases the initial hydration of cement, yet prolongs the dormant period. It was estimated that up to 15 wt% of Portland cement can be replaced by the dust additive without impairing the strength properties of samples after 28 days of hardening. However, after 90 days of hydration, the compressive strength of all samples with the investigated additive is lower than in pure OPC samples. This phenomenon is concerned with the formation of a significant amount of Friedel's salt. The content of chlorides in the raw material was reduced from 4.901 to 0.612 wt% by washing with water, when the water-to-solid ratio was equal to 10. The results of the investigation showed that the washed and ground cupola dust had a positive effect on the compressive strength of the cement samples. When 5, 10, and 15 wt% of prepared dust additive were used, the compressive strength of samples after 28 and 90 days of hydration was greater than that of pure Portland cement sample. The findings suggest that the additionally prepared dust additive leads to the formation of a stable structure of the cement stone, accelerates the calcium silicates hydration, and promotes the formation of gismondine.  相似文献   

12.
The present work exposes preliminary results concerning ordinary Portland cement (OPC) blended with oxide fumes produced in steel smelting plants and known as electric arc furnace dust (EAFD). After acid treatment of the EAFD, the powder obtained was formed basically of nanometric particles of ZnFe2O4. The incorporation of EAFD to OPC produced a small retardation of the setting process. Nevertheless, after 7 days the compressive strength of the OPC/EAFD pastes was superior and after 28 days the extent of hydration in OPC and OPC/EAFD pastes was equivalent. The present results indicate that a compressive strength of 72 MPa can be attained after 42 days for OPC doped with 10 wt% of EAFD.  相似文献   

13.
This study investigated the hydration properties of Type I, Type III and Type V cements, mixed with municipal solid waste incinerator fly ash, to produce slag-blended cement pastes. The setting time of slag-blended cement pastes that contained 40% slag showed significantly retardation the setting time compared to those with a 10% or even a 20% slag replacement. The compressive strength of slag-blended cement paste samples containing 10 and 20% of slag, varied from 95 to 110% that developed by the plain cement pastes at later stages. An increased blend ratio, due to the filling of pores by C-S-H formed during pozzolanic reaction tended to become more pronounced with time. This resulting densification and enhanced later strength was caused by the shifting of the gel pores. It was found that the degree of hydration was slow in early stages, but it increased with increasing curing time. The results indicated that it is feasible to use MSWI fly ash slag to replace up to 20% of the material with three types of ordinary Portland cement.  相似文献   

14.
This work investigated the potential for utilization of MSWI incineration fly ash as solidification binder to treat heavy metals-bearing industrial waste sludge. In the study, Municipal Solid Waste Incineration (MSWI) fly ash was used along with ordinary Portland cement to immobilize three different types of industrial sludge while MSWI incineration fly ash was stabilized at the same time. The results showed that the matrixes with heavy metals-bearing sludge and MSWI fly ash have a strong fixing capacity for heavy metals: Zn, Pb, Cu, Ni and Mn. Specimens with only 5-15% cement content was observed to be sufficient to achieve the target compressive strength of 0.3 MPa required for landfill disposal. An optimum mix comprising 45% fly ash, 5% cement and 50% of the industrial sludge could provide the required solidification and stabilization. Addition of MSWI can improve the strength of matrix. Meanwhile, the main hydration products of new S/S matrix are ettringite AFt, Friedel's salt and C-S-H. These hydration products play an important role in the fixing of heavy metals. The co-disposal of MSWI fly ash with heavy metals-bearing sludge can minimize the enlargement of the landfill volume and stabilize the heavy metals effectively.  相似文献   

15.
The utilization of lime sludge (LS), a pulp and paper industry residue, and silica fume (SF), a ferrosilicon industry by-product, as raw materials for the preparation of β-dicalcium silicate (β-C2S or β-belite) is investigated. β-phase belite is synthesized in a molar ratio of calcined LS/SF at 2.0 by hydrothermal method followed by calcination at 1000 °C for 2 h, which is lower temperature than conventional production temperature of about 1200 °C, and importantly without any chemical stabilizers. The produced belite cements containing 89.3% of β-belite, the rest being α-belite (5.93%), tobermorite (C–S–H, 1.71%), cristobolite (SiO2, 1.83%) and free lime (CaO, 1.24%). The micro analytical characteristic of the raw materials and formed belite are examined by means of TG-DTA-DTG, XRF, XRD, SEM with EDAX, FT-IR, BET techniques and isothermal conduction calorimetry. The hydration of pastes and compressive strength of mortars of the formed β-belite blended with ordinary Portland cement are studied with a partial replacement of cement by 10%, 20% and 30%. The reaction of β-belite in combination with Portland cement is comparable up to 10% replacement of cement to the pozzolanic reactions of other materials used in similar ways. However, it is observed that the premature stiffening of belite incorporated cement pastes takes place with low heat of hydration because of higher reactivity of belite cement incorporation.  相似文献   

16.
A clinker and a cement obtained from a raw mix containing ceramic waste as an alternative raw material were characterized in the present study. Their hydration, physical–chemical properties and leaching behaviour in different acid media were also explored. The findings showed that both the clinker and the cement met all the requirements set out in European standards EN 197-1 [1], although they had higher ZnO, ZrO2, and B2O3 contents than an industrially produced reference product.According to the hydration studies, initial hydration was somewhat retarded in the new cement, which exhibited longer initial and final setting times and lower 2-day mechanical strength. The SEM/BSE/EDS microstructural study showed, however, that morphologically and compositionally, the hydration products formed were comparable to unadditioned Portland cement paste products. While low concentrations of Zn and B were observed to leach in acid media, the biotoxicity trials conducted confirmed that these concentrations were not toxic. Zr was retained in the cement pastes.  相似文献   

17.
Cement pastes undergo elevated temperature histories due to hydration heat liberation at early ages. Thermal expansion coefficients of cement paste and concrete change with age, showing a decrease after mixing, a subsequent minimum and then a gradual increase. These changes contribute to thermal strain. In this study, effects of water–cement ratio and cement type on volume changes in early-age cement pastes were experimentally examined using a newly developed apparatus capable of simultaneously determining both thermal expansion coefficient and total strain of cement pastes. The dependence of the thermal expansion coefficient on hydration was affected by water–cement ratio, cement type, elevated temperature history and particularly by the free water content of the cement pastes, while the relationship between thermal expansion coefficient and free water content varied with water–cement ratio. A notable increase in thermal expansion coefficient at early ages was observed when water–cement ratio was low and alite content in cement was high. At a water–cement ratio of 0.30, low-heat Portland cement paste resulted in a small total strain while moderate-heat and ordinary Portland cement pastes showed larger strains. Because no particular difference was observed in the thermal strains, shrinkage in the low-heat Portland cement paste was attributed to autogenous strain. At a water–cement ratio of 0.40, self-desiccation had a significant influence upon autogenous shrinkage and dependence of thermal expansion coefficient on hydration, and the effect of the mineral composition of cements was notable. However, for cement pastes with a water cement ratio of 0.55, no significant effects of self-desiccation were observed, probably because considerable excess water was present.  相似文献   

18.
The maintenance of waterways generates large amounts of dredged sediments that are an environmental issue. This paper focuses on the use of fluvial sediment to replace a portion of the raw materials of Portland cement clinker, which would otherwise come from natural resources. The mineralogy of the synthetic cement was characterised using X-ray diffraction and scanning electron microscopy and its reactivity was followed by isothermal calorimetry. Comparisons were made to a commercial ordinary Portland cement (CEM I 52.5). Compressive strength measurements were conducted on cement pastes at 1, 2, 4, 7, 14, 28 and 56 days to study strength development. The results showed that Portland cement clinker can be successfully synthesised by using up to 39% sediment. The compressive strengths developed by the cement made from sediment were equivalent to those obtained with the reference at early ages and 20% higher at long term.  相似文献   

19.
The reuse of cement-solidified Municipal Solid Waste Incinerator (MSWI) fly ash (solidified/stabilised (S/S) product) as an artificial aggregate in Portland cement mortars was investigated. The S/S product consisted of a mixture of 48 wt.% washed MSWI fly ash, 20 wt.% Portland cement and 32 wt.% water, aged for 365 days at 20 degrees C and 100% RH. Cement mortars (water/cement weight ratio=0.62) were made with Portland cement, S/S product and natural sand at three replacement levels of sand with S/S product (0%, 10% and 50% by mass). After 28 days of curing at 20 degrees C and 100% RH, the mortar specimens were characterised for their physico-mechanical (porosity, compressive strength) and leaching behaviour. No retardation in strength development, relatively high compressive strengths (up to 36 N/mm2) and low leaching rates of heavy metals (Cr, Cu, Pb and Zn) were always recorded. The leaching data from sequential leach tests on monolithic specimens were successfully elaborated with a pseudo-diffusional model including a chemical retardation factor related to the partial dissolution of contaminant.  相似文献   

20.
In this paper the mechanical properties of magnesium potassium phosphate cements used for the Stabilization/Solidification (S/S) of galvanic wastes were investigated. Surrogate wastes (metal nitrate dissolutions) were employed containing Cd, Cr(III), Cu, Ni, Pb or Zn at a concentration of 25 g dm−3 and different water-to-solid (W/S) ratios (0.3, 0.4, 0.5 and 0.6 dm3 kg−1) have been employed. Cements were prepared by mixing hard burned magnesia of about 70% purity with potassium dihydrogen phosphate. Compressive strength and tensile strength of specimens were determined. In addition the volume of permeable voids was measured. It was found that when comparing pastes that the volume of permeable voids increases and mechanical strength decreases with the increase of water-to-solid ratio (W/S). Nevertheless pastes with the same material proportions containing different metals show different mechanical strength values. The hydration products were analyzed by XRD. With the increase of water content not previously reported hydration compound was detected: bobierrite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号