首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
电主轴热变形是影响加工精度的主要因素之一,而热变形主要由电主轴温升引起,其中冷却系统是影响电主轴温升的关键因素。为了优化冷却系统关键技术参数,以某型号高速电主轴为例,建立了考虑主轴不同旋转面换热系数的热特性模型,提高了温度场和热误差的仿真精度,并进行了主轴不同转速的温升与热误差实验,验证了仿真模型的正确性;基于所建立的电主轴热特性仿真模型,利用正交试验法进行了冷却系统参数优化,冷却参数优化后的仿真实验结果表明,电主轴最高温度降低了2.0℃,热变形减小了25.76μm,为电主轴冷却系统优化提供了理论参考。  相似文献   

2.
《机械科学与技术》2015,(9):1406-1409
对某液体静压电主轴系统进行热态特性研究,分析系统热源和散热方式,建立基于热-结构耦合的电主轴系统有限元分析模型,通过对电主轴系统进行热-结构耦合分析,得到某工况下电主轴系统的温度场和不同方向的热变形分布。结果表明:电主轴系统的最高温度出现在主轴前轴承处;电主轴系统轴向最大热变形出现在主轴前端砂轮安装处,沿径向的热变形偏大,影响加工精度。  相似文献   

3.
为了更准确地对电主轴系统进行温度场的预测,建立了综合考虑接触热阻、轴承热变形和气隙变化等因素影响的热网络模型和热结构耦合热网络瞬态温度平衡方程(简称热平衡方程).首先计算了接触热阻、轴承热变形、电机的定子与转子由于热变形导致的气隙变化以及电机与轴承的生热;然后选择电主轴主要部件作为温度节点,建立了电主轴系统的热网络模型...  相似文献   

4.
高速电主轴热结构耦合特性的有限元分析   总被引:4,自引:0,他引:4  
分析了电主轴的各种热源及其发热量,建立了基于热一结构耦合的电主轴有限元分析模型,计算出电主轴复杂的热边界各种状况下的对流换热系数,利用有限元分析软件ANSYS对电主轴的温度场及其主轴的热变形进行仿真分析并进行实验验证.针对设计实例,提出了改善电主轴热态特性的措施,对改进后的电主轴进行有限元分析表明改进措施具有良好效果.  相似文献   

5.
利用Pro/E建立了电主轴三维模型,运用Workbench对高速电主轴进行模态分析和谐响应分析。获得电主轴的固有频率以及临界转速等动态特性;在此基础上对电主轴前端处的位移响应特性进行分析,证明了电主轴结构设计的合理性.为下一步的电主轴特性研究奠定基础。  相似文献   

6.
高速电主轴工作过程中产生大量的热,导致主轴前端产生热变形,严重影响主轴加工精度.本文提出变压预紧力电主轴热误差预测模型,将传热学理论计算与键合图模型相结合,可实时且准确预测同类结构的电主轴热伸长.建立主轴的热-固耦合模型,通过有限元分析得到耦合作用下主轴温度场分布规律;根据温度场分布规律及热能流向,运用热力学理论将主轴...  相似文献   

7.
磨削电主轴高速运行时内置电机温升较大,对其工作性能将产生严重影响.以超高速磨削电主轴为研究对象,采用双向耦合方法进行电主轴电机磁热分析.分别建立电主轴电磁场与温度场的有限元分析模型,对电主轴散热边界条件和材料的温度特性进行计算.将电磁场分析得到的电磁损耗导入到温度场中计算温度场分布,根据温度场改变电磁场材料属性参数以更...  相似文献   

8.
以高速加工中心用电主轴为研究对象,对其动态特性进行了仿真分析,得到其低阶频率和振型,为电主轴的稳定性研究提供了理论依据。同时,分析了转速、切削力和润滑方式等因素对电主轴温度的影响。  相似文献   

9.
针对数控机床电主轴热分析过程中热态实验数据难以获取,难以进行热态特性分析的问题,提出了一种考虑电主轴产热与散热的综合有限元分析模型,利用有限元分析方法得到热态温度场分布图,可为数控机床电主轴的温度控制及热分析提供理论基础和数据支撑.  相似文献   

10.
高速电主轴热态特性的研究   总被引:1,自引:0,他引:1  
介绍了高速电主轴的基本结构,建立电主轴热态特性分析的有限元模型,并用有限元软件对模型进行了温度场的分析,从而获得电主轴温度场的信息,为控制电主轴的温度提供有力的依据。基于上述分析,提出改善电主轴热态特性的方法和措施。  相似文献   

11.
在分析电主轴温度场理论的基础上,建立某高速磨床电主轴系统的有限元模型,计算了电主轴热特性分析的边界条件,利用有限元软件ANSYS Workbench分析其热态特性,得到了主轴系统的稳态温度场分布和热变形情况;同时分析计算了不同转速对主轴系统温升及热变形的影响.结果表明:主轴转速越高,相应主轴单元的温升变化及主轴热变形也越大.此分析为改善电主轴温度场分布及减小热变形提供了理论依据.  相似文献   

12.
针对设计出的高效节能加热炉进行三维建模,并利用ANSYS的FLOTRAN CFD模块进行流—固耦合分析,研究其在正常工作状态下的温度分布情况,找出结构设计上存在的不足,并结合实际情况,提出可行的改进策略:增加炉口下端封板的厚度。  相似文献   

13.
基于有限元分析方法的高速电主轴热态特性研究   总被引:5,自引:0,他引:5  
介绍了高速电主轴的特点,分析了高速电主轴单元的热变形机理与散热机制。建立了某型高速电主轴热态特性有限元分析模型,利用ANSYS进行了稳态/瞬态温度场及热-结构耦合场分析,并利用分布加载瞬态热分析模拟了机床一天中的实际工作情况,得到了电主轴的温度场变化情况,为有效控制电主轴的温升提供了理论依据。在分析结果的基础上,提出了改善电主轴热态特性的措施,为电主轴冷却结构设计提供了参考。  相似文献   

14.
在高速电主轴转子系统中,角接触球轴承的工作特性受温升的影响显著,极易产生胶合。为了得到更加精确的角接触球轴承瞬态温度场,建立了考虑自旋的角接触球轴承生热及传热模型,并利用MATLAB软件得到了轴承的生热量,随后建立了轴承的三维参数化模型,并基于显示动力学理论在LS-DYNA平台上进行了热-力耦合有限元仿真分析,且对影响轴承瞬态温度场的主要因素进行了研究。研究结果表明:转速与温升呈非线性正相关;高转速下轴承温升对预紧力更加敏感;生热量随预紧力的增加逐渐增大,当施加的预紧力大于最小预紧力时,温升随预紧力增加而变大。研究可为高速电主轴轴承的设计和稳定性分析提供理论参考。  相似文献   

15.
为实现对电主轴振动特性进行主动控制并改善其运行过程中的动态性能,利用所研制的预载荷可调整电主轴,搭建了电主轴振动特性在线控制试验平台,基于该平台,开展了轴承预载荷在线控制条件下电主轴振动特性的试验研究.试验结果表明:电主轴转子系统的1~5阶固有频率随轴承预载荷的增大而提高,其中2阶固有频率受轴承预载荷的影响最大;在同一...  相似文献   

16.
针对电主轴的热分析主要集中于内置电机为感应电机的电主轴,对内置电机为永磁型的研究甚少的现状,基于电磁学和摩擦学理论对永磁型电主轴的热源进行了计算,并使用传热学经典理论计算电主轴热边界条件。以此为基础在Ansys Workbench中建立电主轴有限元分析模型进行热态分析,根据求解结果进行热-结构耦合分析。结果表明,由于永磁同步电主轴有着转子不发热的固有特性,导致热量主要集中在前后轴承处并使主轴产生热变形。  相似文献   

17.
HMC80卧式加工中心电主轴热态特性分析   总被引:1,自引:0,他引:1  
分析了高速电主轴的两个热源,轴承发热和电机的发热,并计算了轴承和电机的发热量.分析了高速电主轴的散热特性,并对电主轴各部分散热系数进行了计算.以HMC80卧式加工中心电主轴为例,运用ANSYS有限元软件建立了电主轴的稳态热分析模型,以散热系数为边界条件,轴承和电机的发热量为热载荷进行有限元分析,得出该电主轴在热稳定状态下的温度场分布.分析结果表明,主轴前后轴承的温升符合该电主轴的温升标准,说明了该电主轴设计的合理性,最后提出了改善该电主轴热态特性的措施.  相似文献   

18.
为研究高速滚珠轴承电主轴的热特性对其性能的影响,计算轴承的热源生热并进行热特性仿真。研究轴向载荷和转速对接触角的影响规律,进而采用局部热计算方法计算轴承的热损耗。结果发现,轴承的旋转速度对其热损耗的影响比轴向载荷作用更明显,并且滚珠的自旋摩擦是轴承生热的主要形式。结合热源生热计算结果,运用ANSYS对一定转速的空载电主轴分别进行稳态热分析和瞬态热分析,发现电主轴的最高温度点出现在内置电机转子的中心区域。将稳态热分析结果加载到有限元模型进行热-结构耦合分析,发现最大轴向位移出现在主轴的最前端,最大轴向应力则出现在前轴承球与外滚道的接触区域。设计空载电主轴温升测定实验,验证仿真结果的正确性。  相似文献   

19.
徐荣飞  范开国 《中国机械工程》2022,33(16):1965-1971
为提高热特性有限元分析精度,提出了基于数字孪生的电主轴热特性分析方法。搭建基于IoT数据采集系统的电主轴热特性数字孪生物理空间,设计开发基于Java、ANSYS、MATLAB联合编程的热特性数字孪生系统,提出了基于关键测温点温度的热边界条件修正模型,实现了物理空间与虚拟空间的数据映射及热特性数字孪生。实验结果表明,热特性数字孪生体的温度精度达98%,热变形精度达95%,有效提高了热特性有限元分析精度。  相似文献   

20.
在高速磨削加工中,电主轴的热结构状态直接影响高速加工机床的加工尺寸精度和表面质量。这篇文章利用传统理论对高速磨削电主轴进行了热-结构耦合分析,分别计算热稳态下主轴各种边界条件,在理论研究的基础上结合有限元软件进行热-结构耦合仿真分析,得到电主轴热变形主要与电机损耗、轴承发热与冷却液系统有关的结论。这一结论充分说明引起电主轴变形的主要因素,为今后在试验中建立电主轴热补偿体系以及减少热变形提供了有力的理论支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号