首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Energy levels and radiative rates are reported for transitions in Br-like tungsten, W XL, calculated with the general-purpose relativistic atomic structure package (grasp). Configuration interaction (CI) has been included among 46 configurations (generating 4215 levels) over a wide energy range up to 213 Ryd. However, for conciseness results are only listed for the lowest 360 levels (with energies up to ∼43 Ryd), which mainly belong to the 4s24p5,4s24p44d,4s24p44f,4s4p6,4p64d,4s4p54d,4s24p34d2, and 4s24p34d4f configurations, and provided for four types of transitions, E1, E2, M1, and M2. Comparisons are made with existing (but limited) results. However, to fully assess the accuracy of our data, analogous calculations have been performed with the flexible atomic code, including an even larger CI than in grasp. Our energy levels are estimated to be accurate to better than 0.02 Ryd, whereas results for radiative rates (and lifetimes) should be accurate to better than 20% for a majority of the strong transitions.  相似文献   

2.
Energy levels, line strengths, oscillator strengths, radiative decay rates, and fine-structure collision strengths are presented for the Zn-like ions Nb XII and Mo XIII. The atomic data are calculated with the AUTOSTRUCTURE code, where relativistic corrections are introduced according to the Breit–Pauli distorted wave approach. We present the calculations of atomic data for 110 fine-structure levels generated from fifteen configurations (1s22s22p63s23p63d10)4s2, 4s4p, 4p2, 4s4d, 4s4f, 4s5s, 4p4d, 4s5p, 4s5d, 4p4f, 4p5s, 4d2, 4d4f, 4f2, and 3d94s24p. Fine-structure collision strengths for transitions from the ground and the first four excited levels are presented at six electron energies (20, 50, 80, 110, 150, and 180 Ryd). Our atomic structure data are compared with the available experimental and theoretical results.  相似文献   

3.
Oscillator strengths, radiative decay rates, and electron collision strengths are calculated for the ions Ar XV, Ti XIX, Ni XXV, Ge XXIX, and Kr XXXIII in the Be I isoelectronic sequence. The corresponding atomic data for the ions Ca XVII, Cr XXI, Fe XXIII, Zn XXVII, and Se XXXI are determined by interpolation. The configurations included in the calculation of the atomic data are 2s2, 2s2p, 2p2, 2s3s, 2s3p, 2s3d, 2p3s, 2p3p, and 2p3d. The intensities for transitions between the lowest 20 levels of these configurations are calculated for an electron temperature equal to half the ionization potential and for electron densities equal to 1013, 1014, and 1015 cm−3.  相似文献   

4.
Energy levels, transition probabilities, oscillator strengths, line strengths, and lifetimes have been calculated for silicon-like manganese and germanium, Mn XII and Ge XIX. The configurations 3s23p2, 3s3p3, 3s23p3d, 3s3p23d, and 3p4 were used in the calculations and 88 fine-structure levels were obtained. The fully relativistic GRASP code has been adopted, and results are reported for all electric dipole, electric quadrupole, magnetic dipole, and magnetic quadrupole transitions among levels of Mn XII and Ge XIX. Comparisons have been made with available theoretical and experimental results.  相似文献   

5.
We have calculated the oscillator strengths, radiative decay rates, and the electron collision strenghts for the B-like ions Ar XIV, Ti XVIII, Fe XXII, Ge XXVIII, and Kr XXXII. The corresponding atomic data for the ions Ca XVI, Cr XX, Ni XXIV, Zn XXVI, and Se XXX are determined by interpolation. The configurations included in the calculation are 2s22p, 2s2p2, 2p3, 2s23s, 2s23p, and 2s23d. Using both the computed and the interpolated atomic data, we calculated the populations of the 20 levels belonging to these configurations. The intensities of the transitions are presented for electron densities of interest for the diagnosis of tokamak plasmas (1013, 1014, and 1015 cm−3).  相似文献   

6.
Non-orthogonal orbitals in the multiconfiguration Hartree-Fock approach are used to calculate line strengths, oscillator strengths and transition probabilities for E1 transitions among the fine-structure levels of the 3s23p3, 3s3p4, 3s23p23d, 3s3p33d, 3p5 and 3s23p3d2 configurations in Fe XII and 3s23p, 3s3p2, 3s23d, 3p3, 3s3p3d, 3p23d, 3s3d2, 3p3d2, 3s24s, 3s24p, 3s3p4s and 3s24d configurations in Fe XIV. The lifetimes of excited levels belonging to these configurations of Fe XII and Fe XIV are also presented. An accurate representation of the levels has been obtained using spectroscopic and correlation radial functions. The wavefunctions exhibit large correlations and significant dependence of one-electron valence orbitals due to both the total and intermediate terms. The relativistic corrections are included through the one-body and two-body operators in the Breit-Pauli Hamiltonian. Progressively larger calculations are performed to check for important electron correlation contributions and for convergence of results. The atomic wavefunctions give excitation energies which are in close agreement with experiment. The present oscillator strengths and transition probabilities compare very well with previous large scale calculations.  相似文献   

7.
Oscillator strengths, radiative decay rates, and electron collision strengths have been calculated for the C-like ions Ar XIII, Ti XVII, Fe XXI, Zn XXV, Se XXIX, and Kr XXXI. The corresponding atomic data for the ions Ca XV, Cr XIX, Ni XXIII, and Ge XXVII are determined by interpolation. The configurations included in the calculation are 2s22p2, 2s2p3, 2p4, 2s22p3s, 2s22p3p, and 2s22p3d. The populations of the 46 levels belonging to these configurations are calculated for electron densities equal to 1013, 1014, and 1015 cm−3, and the spectral line intensities of the transitions from these levels are also presented.  相似文献   

8.
The energy levels, spontaneous radiative decay rates, and electron impact collision strengths are calculated for Xe XXVII. The data refer to 107 fine-structure levels belonging to the configurations (1s22s22p6)3s23p63d10, 3s23p63d94l, 3s23p53d104l and 3s3p63d104l (l = s, p, d, f). The collision strengths are calculated with a grid of 20 collision energies between 10 and 1500 eV in terms of the energy of the scattered electron, by using the distorted-wave approximation. Effective collision strengths are obtained at six temperatures, Te (eV) = 10, 100, 300, 500, 800 and 1500, by integrating the collision strengths over a Maxwellian electron distribution. Coupled with these atomic data, a hydrodynamic code MED103 can be used to simulate the Ni-like Xe X-ray laser.  相似文献   

9.
The electron impact collision strengths and the spontaneous radiative decay rates are presented for the following ions of the Ne isoelectronic sequence: Si V, Ar IX, Ti XIII, Fe XVII, Ge XXIII and Kr XXVII. Data are given for the 27 levels that belong to four different configurations (2s22p6, 2s22p53s, 2s22p53p, and 2s22p53d). By use of the atomic data calculations of the above-mentioned ions, the atomic data for all the ions with 14 ? Z ? 36 have been interpolated. Energy levels and level populations are presented for all the even-Z ions with 14 ? Z ? 36 (Si V, S VII, Ar IX, Ca XI, Ti XIII, Cr XV, Fe XVII, Ni XIX, Zn XXI, Ge XXIII, Se XXV, and Kr XXVII). The level populations are given for the three electron densities 1013, 1014, and 1015 cm?3. Spectral line intensities are also presented for all transitions with intensities within two orders of magnitude of the most intense line in each ion.  相似文献   

10.
Weighted oscillator strengths, weighted radiative rates, and line strengths for all the E1 transitions between 285 fine-structure levels belonging to the 3d6, 3d54s, and 3d54p configurations of Fe III are presented, in ascending order of wavelength. Calculations have been undertaken using the general configuration interaction (CI) code CIV3. The large configuration set is constructed by allowing single and double replacements from any of 3d6, 3d54s, 3d54p, and 3d54d configurations to nl orbitals with n?5,l?3 as well as 6p. Additional selective promotions from 3s and 3p subshells are also included in the CI expansions to incorporate the important correlation effects in the n=3 shell. Results of some strong transitions between levels of 3d6, 3d54s, and 3d54p configurations are also presented and compared with other available calculations. It is found that large disagreements occur in many transitions among the existing calculations.  相似文献   

11.
Electron impact collision strengths, energy levels, oscillator strengths, and spontaneous radiative decay rates are calculated for Ni XIV. We include in the calculations all the configurations belonging to the n=3 complex, and provide data for the lowest 143 fine-structure levels, belonging to the configurations 3s23p3, 3s3p4, 3s23p23d, 3p5, 3s3p33d, and 3s23p3d2. Collision strengths are calculated at six incident energies for all transitions: 0.112, 8.07, 21.3, 43.4, 80.3, and 141.8 Ry above the threshold of each transition. Calculations have been carried out using the Flexible Atomic Code. Excitation rate coefficients are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Using the excitation rate coefficients and the radiative transition rates of the present work, statistical equilibrium equations for level populations are solved at electron densities covering the range of 108-1014 cm−3 and at an electron temperature of , corresponding to the maximum abundance of Ni XIV. Spectral line intensities are calculated, and their diagnostic relevance is discussed. This data set is available in version 6.0 of the CHIANTI database.  相似文献   

12.
The energy levels, spontaneous radiative decay rates, and electron impact collision strengths are calculated for La XXX. The data refer to 107 fine-structure levels belonging to the configurations (1s22s22p6)3s23p63d10, 3s23p63d94l, 3s23p53d104l, and 3s3p63d104l (l = s, p, d, f). The collision strengths are calculated with a 20-collision-energy grid in terms of the energy of the scattered electron between 10 and 10,000 eV by using the distorted-wave approximation. Effective collision strengths are obtained at seven electron temperatures: Te (eV) = 10, 100, 300, 500, 800, 1000, and 1500 by integrating the collision strengths over a Maxwellian electron distribution. Coupled with these atomic data, a hydrodynamic code MED103 can be used to simulate the Ni-like La X-ray laser at 8.8 nm.  相似文献   

13.
An extensive set of oscillator strengths, line strengths, and radiative decay rates for the allowed and forbidden transitions in Fe XIX is presented. They correspond to 1626 fine structure levels of total angular momenta 0≤J≤8 of even and odd parities with 2≤n≤10, 0≤l≤9, 0≤L≤10, and (2S+1)=1, 3, 5. In contrast, the compiled table of the National Institute for Standards and Technology (NIST) lists only 63 observed levels. A total of 289,291 electric dipole allowed transitions are presented. They were obtained in the close coupling approximation using the relativistic Breit-Pauli R-matrix method. The wavefunction expansion included 15 levels of the configurations 2s22p3, 2s2p4, and 2p5 of the Fe XX core. The calculated fine structure levels are assigned with spectroscopic identifications using quantum defect analysis. Comparison with the observed energies shows very good agreement, the largest difference being less than 4%. The transitions also compare well with the compiled data by NIST and recent calculations. The forbidden transitions of the electric quadrupole and octupole, and magnetic dipole and quadrupole, type are presented for the 379 levels of the configurations 2s22p4, 2s2p5, 2p6, 2s22p33s, 2s22p33p, 2s22p33d, 2s22p34s, 2s22p34p, 2s22p34d, 2s22p34f, 2s2p43s, 2s2p43p, 2s2p43d, 2s2p44s, 2s2p44p, and 2s22p23s2 of Fe XIX. They correspond to a total of 66,619 transitions. These results have been obtained from relativistic Breit-Pauli atomic structure calculations using the program SUPERSTRUCTURE. The forbidden transition probabilities show very good agreement with those compiled by NIST.  相似文献   

14.
Wavelengths, transition rates, and line strengths are calculated for the 76 possible multipole (E1, M1, E2, M2, E3, and M3) transitions between the excited 3s23p63d94l, 3s23p53d104l, and 3s3p63d104l and the ground 3s23p63d10 states in Ni-like ions with the nuclear charges ranging from Z = 30 to 100. The relativistic many-body perturbation theory (RMBPT), including the Breit interaction, is used to evaluate energies and transition rates for multipole transitions in hole-particle systems. This method is based on relativistic many-body perturbation theory, agrees with MCDF calculations in lowest-order, includes all second-order correlation corrections, and includes corrections from negative energy states. The calculations start from a 1s22s22p63s23p63d10 Dirac-Fock potential. First-order perturbation theory is used to obtain intermediate-coupling coefficients, and the second-order RMBPT is used to determine the matrix elements. The contributions from negative-energy states are included in the second-order E1, M1, E2, M2, E3, and M3 matrix elements. The resulting transition energies and transition rates are compared with experimental values and with results from other recent calculations. As a result, we present wavelengths and transition rates data for the selected transitions that include the 76 possible multipole (E1, M1, E2, M2, E3, and M3) transitions between the excited 3s23p63d94l, 3s23p53d104l, and 3s3p63d104l states and the ground 3s23p63d10 state in Ni-like ions. Trends of the line strengths for the 76 multipole transitions and oscillator strengths for the 13 E1 transitions as function of Z are illustrated graphically. The Z-dependence of the energy splitting for all triplet terms of the 3s23p63d94l, 3s23p53d104l, and 3s3p63d104l configurations are shown in the range of Z = 30-100.  相似文献   

15.
Energy levels and radiative rates for electric dipole (E1) transitions among the lowest 141 levels of the (1s22s22p6) 3?2, 3?3?′, and 3?4? configurations of Fe XV, Co XVI, and Ni XVII are calculated through the CIV3 code using extensive configuration-interaction (CI) wavefunctions. The important relativistic effects are included through the Breit-Pauli approximation. In order to keep the calculated energy splittings close to the experimental values, we have made small adjustments to the diagonal elements of the Hamiltonian matrices. The energy levels, including their orderings, are in excellent agreement with the available experimental results for all three ions. However, experimental energies are only available for a few levels. Since mixing among some levels is found to be very strong, it becomes difficult to identify these uniquely. Additionally, some discrepancies with other theoretical work (particularly for Ni XVII) are very large. Therefore, in order to confirm the level ordering as well as to assess the accuracy of energy levels and radiative rates, we have performed two other independent calculations using the GRASP and FAC codes. These codes are fully relativistic, but the CI in the calculations is limited to the basic (minimum) configurations only. This enables us to assess the importance of including elaborate CI for moderately charged ions. Additionally, we report results for electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2) transitions, and list lifetimes for all levels. Comparisons are made with other available experimental and theoretical results, and the accuracy of the present results is assessed.  相似文献   

16.
We present accurate oscillator strengths, line strengths and radiative rates for 1073 E1 transitions among the 86 levels belonging to 2s22p4, 2s2p5, 2p6, and 2s22p3(4So, 2Do, 2Po)3? configurations in Mg V. We have used 1s and 2s Hartree-Fock orbitals, re-optimized 2p on 2p3(2Do)3s 3Do and optimized 3s,3p,3d orbitals on real states. Sixteen additional orbitals up to 8d are optimized either as a correction to n = 3 physical orbitals or as a correlation orbital. A very large set of configurations including up to three electron promotions are used to account for all important correlation effects. All of the main five terms in the Breit-Pauli operator (except the orbit-orbit interaction) are included in order to account for the relativistic effects. Small adjustments to the diagonal elements of the Hamiltonian matrix are made to bring the calculated energies within a few cm−1 of the corresponding NIST recommended data wherever available. The calculated oscillator strengths, line strengths, and radiative rates for almost all of the E1 transitions show excellent agreement with the corresponding MCDF results of Fischer. The recent results of Bhatia et al. are found to be consistently higher by 20-45%. The accuracy of the present calculation is considered to be better than the NIST accuracy ratings for various transitions.  相似文献   

17.
We present accurate oscillator strengths and radiative rates for 2173 E1 transitions among the 120 levels belonging to 3s23p4, 3s3p5, and 3s23p3(4So,2Do,2Po)n? configurations where . A configuration interaction approach is employed through the standard CIV3 program. The 114 LS states included in the present calculation generate 250 fine-structure levels belonging to the above configurations below 100,000 cm−1. However, results of only 120 fine-structure levels are presented due to the absence of experimental energy values for the remaining levels. Tabulations of oscillator strengths and radiative rates, and their comparison with other calculations, are presented in the first two tables. In a separate table the oscillator strengths and transition probabilities, in length and velocity gauges, are presented for 2173 E1 transitions, and are arranged in ascending order of wavelength.  相似文献   

18.
Fine-structure calculations of energy levels, oscillator strengths, and transition probabilities for transitions among the terms belonging to 3s23p2, 3s3p3, 3s23p3d, 3s23p4s, 3s23p4p, 3s23p4d, 3s23p5s and 3s23p5p configurations of silicon-like ions P II, S III, Cl IV, Ar V and K VI have been calculated using configuration-interaction version 3 (CIV3). We compared our data with the available experimental data and other theoretical calculations. Most of our calculations of energy levels and oscillator strengths (in length form) show good agreement with both experimental and theoretical data. Lifetimes of the excited levels are also given.  相似文献   

19.
Energy levels, oscillator strengths, and electron impact collision strengths have been calculated for Ge-, Ga-, Zn-, Cu-, Ni-, and Co-like Au ions. For Ni-like Au, these atomic data are obtained among the levels belonging to the configurations of ([Ne])3s23p63d10, 3s23p63d9nl, 3s23p53d10nl, and 3s 3p63d10nl (n = 4, 5; l = 0, 1, … , n − 1). For other Au ions, more levels have been obtained with special attention to atomic data up to transitions of 5f → 3d for emission or 3d → 5f for absorption. Configuration interactions are taken into account for all levels included. Collision strengths have been obtained at 20 scattered electron energies (5-40,000 eV) and they are listed at six representative energies of 100, 500, 1000, 5000, 10,000, and 20,000 eV in this work. Effective collision strengths have been obtained by assuming a Maxwellian electron velocity distribution at 10 representative temperatures ranging from 500 to 5000 eV. The present dataset should be adequate for most applications. The energy levels are expected to be accurate to within 0.5%, while oscillator strengths and collision strengths for strong transitions are probably accurate to better than 20%. The complete dataset is available electronically from http://www.astronomy.csdb.cn/EIE/.  相似文献   

20.
The energy levels, oscillator strengths, line strengths, and transition probabilities for transitions among the terms belonging to the 3s23p2, 3s3p3, 3s23p3d, 3s23p4s, 3s23p4p and 3s23p4d configurations of silicon-like ions (Zn XVII, Ga XVIII, Ge XIX, and As XX) have been calculated using the configuration-interaction code CIV3. The calculations have been carried out in the intermediate coupling scheme using the Breit–Pauli Hamiltonian. The present calculations have been compared with the available experimental data and other theoretical calculations. Most of our calculations of energy levels and oscillator strengths (in length form) show good agreement with both experimental and theoretical data. Lifetimes of the excited levels have also been calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号