首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Energy levels and radiative rates are reported for transitions in Cl-like W LVIII. Configuration interaction (CI) has been included among 44 configurations (generating 4978 levels) over a wide energy range up to 363 Ryd, and the general-purpose relativistic atomic structure package (grasp) adopted for the calculations. Since no other results of comparable complexity are available, calculations have also been performed with the flexible atomic code (fac), which help in assessing the accuracy of our results. Energies are listed for the lowest 400 levels (with energies up to ∼98 Ryd), which mainly belong to the 3s23p5, 3s3p6, 3s23p43d, 3s23p33d2, 3s3p43d2, 3s23p23d3, and 3p63d configurations, and radiative rates are provided for four types of transitions, i.e. E1, E2, M1, and M2. Our energy levels are assessed to be accurate to better than 0.5%, whereas radiative rates (and lifetimes) should be accurate to better than 20% for a majority of the strong transitions.  相似文献   

2.
Energy levels and radiative rates are reported for transitions in Br-like tungsten, W XL, calculated with the general-purpose relativistic atomic structure package (grasp). Configuration interaction (CI) has been included among 46 configurations (generating 4215 levels) over a wide energy range up to 213 Ryd. However, for conciseness results are only listed for the lowest 360 levels (with energies up to ∼43 Ryd), which mainly belong to the 4s24p5,4s24p44d,4s24p44f,4s4p6,4p64d,4s4p54d,4s24p34d2, and 4s24p34d4f configurations, and provided for four types of transitions, E1, E2, M1, and M2. Comparisons are made with existing (but limited) results. However, to fully assess the accuracy of our data, analogous calculations have been performed with the flexible atomic code, including an even larger CI than in grasp. Our energy levels are estimated to be accurate to better than 0.02 Ryd, whereas results for radiative rates (and lifetimes) should be accurate to better than 20% for a majority of the strong transitions.  相似文献   

3.
Energy levels, transition probabilities, oscillator strengths, line strengths, and lifetimes have been calculated for Oxygen-like Gallium, Ga XXIV. The configurations 2s22p4, 2s2p5, 2p6, 2s2p43?, 2s22p33?, and 2p53? were used in calculations and 226 fine-structure levels were obtained. The fully relativistic GRASP code has been adopted, and results are reported for all electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2) transitions among the lowest 226 levels of Ga XXIV, belonging to the n≤3 configurations. Comparisons have been made with earlier available theoretical and experimental results.  相似文献   

4.
Energy levels, transition probabilities, oscillator strengths, line strengths, and lifetimes have been calculated for silicon-like manganese and germanium, Mn XII and Ge XIX. The configurations 3s23p2, 3s3p3, 3s23p3d, 3s3p23d, and 3p4 were used in the calculations and 88 fine-structure levels were obtained. The fully relativistic GRASP code has been adopted, and results are reported for all electric dipole, electric quadrupole, magnetic dipole, and magnetic quadrupole transitions among levels of Mn XII and Ge XIX. Comparisons have been made with available theoretical and experimental results.  相似文献   

5.
Energy levels and radiative rates for electric dipole (E1) transitions among the lowest 141 levels of the (1s22s22p6) 3?2, 3?3?′, and 3?4? configurations of Fe XV, Co XVI, and Ni XVII are calculated through the CIV3 code using extensive configuration-interaction (CI) wavefunctions. The important relativistic effects are included through the Breit-Pauli approximation. In order to keep the calculated energy splittings close to the experimental values, we have made small adjustments to the diagonal elements of the Hamiltonian matrices. The energy levels, including their orderings, are in excellent agreement with the available experimental results for all three ions. However, experimental energies are only available for a few levels. Since mixing among some levels is found to be very strong, it becomes difficult to identify these uniquely. Additionally, some discrepancies with other theoretical work (particularly for Ni XVII) are very large. Therefore, in order to confirm the level ordering as well as to assess the accuracy of energy levels and radiative rates, we have performed two other independent calculations using the GRASP and FAC codes. These codes are fully relativistic, but the CI in the calculations is limited to the basic (minimum) configurations only. This enables us to assess the importance of including elaborate CI for moderately charged ions. Additionally, we report results for electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2) transitions, and list lifetimes for all levels. Comparisons are made with other available experimental and theoretical results, and the accuracy of the present results is assessed.  相似文献   

6.
Energy levels, radiative rates, oscillator strengths, line strengths, and lifetimes have been calculated for transitions in B-like to F-like Xe ions, Xe L-XLVI. For the calculations, a fully relativistic grasp code has been adopted, and results are reported for all electric dipole, electric quadrupole, magnetic dipole, and magnetic quadrupole transitions among the lowest 125, 236, 272, 226, and 113 levels of Xe L, Xe XLIX, Xe XLVIII, Xe XLVII, and Xe XLVI, respectively, belonging to the n ? 3 configurations.  相似文献   

7.
Energy levels, radiative rates, oscillator strengths, line strengths, and lifetimes have been calculated for transitions in B-like to F-like Kr ions, Kr XXXIII-XXVIII. For the calculations, the fully relativistic GRASP code has been adopted, and results are reported for all electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2) transitions among the lowest 125, 236, 272, 226, and 113 levels of Kr XXXII, Kr XXXI, Kr XXX, Kr XXIX, and Kr XXVIII, respectively, belonging to the n ? 3 configurations. Comparisons are made with earlier available theoretical and experimental results, and some discrepancies have been noted and explained.  相似文献   

8.
Energy levels, line strengths, oscillator strengths, radiative decay rates, and fine-structure collision strengths are presented for the Zn-like ions Nb XII and Mo XIII. The atomic data are calculated with the AUTOSTRUCTURE code, where relativistic corrections are introduced according to the Breit–Pauli distorted wave approach. We present the calculations of atomic data for 110 fine-structure levels generated from fifteen configurations (1s22s22p63s23p63d10)4s2, 4s4p, 4p2, 4s4d, 4s4f, 4s5s, 4p4d, 4s5p, 4s5d, 4p4f, 4p5s, 4d2, 4d4f, 4f2, and 3d94s24p. Fine-structure collision strengths for transitions from the ground and the first four excited levels are presented at six electron energies (20, 50, 80, 110, 150, and 180 Ryd). Our atomic structure data are compared with the available experimental and theoretical results.  相似文献   

9.
The energy levels, oscillator strengths, line strengths, and transition probabilities for transitions among the terms belonging to the 3s23p2, 3s3p3, 3s23p3d, 3s23p4s, 3s23p4p and 3s23p4d configurations of silicon-like ions (Zn XVII, Ga XVIII, Ge XIX, and As XX) have been calculated using the configuration-interaction code CIV3. The calculations have been carried out in the intermediate coupling scheme using the Breit–Pauli Hamiltonian. The present calculations have been compared with the available experimental data and other theoretical calculations. Most of our calculations of energy levels and oscillator strengths (in length form) show good agreement with both experimental and theoretical data. Lifetimes of the excited levels have also been calculated.  相似文献   

10.
The energy levels, spontaneous radiative decay rates, and electron impact collision strengths are calculated for La XXX. The data refer to 107 fine-structure levels belonging to the configurations (1s22s22p6)3s23p63d10, 3s23p63d94l, 3s23p53d104l, and 3s3p63d104l (l = s, p, d, f). The collision strengths are calculated with a 20-collision-energy grid in terms of the energy of the scattered electron between 10 and 10,000 eV by using the distorted-wave approximation. Effective collision strengths are obtained at seven electron temperatures: Te (eV) = 10, 100, 300, 500, 800, 1000, and 1500 by integrating the collision strengths over a Maxwellian electron distribution. Coupled with these atomic data, a hydrodynamic code MED103 can be used to simulate the Ni-like La X-ray laser at 8.8 nm.  相似文献   

11.
Transition probabilities and oscillator strengths of 176 spectral lines with astrophysical interest arising from 5d10ns (n = 7,8), 5d10np (n = 6,7), 5d10nd (n = 6,7), 5d105f, 5d105g, 5d10nh (n =  6,7,8), 5d96s2, and 5d96s6p configurations, and radiative lifetimes for 43 levels of Pb IV, have been calculated. These values were obtained in intermediate coupling (IC) and using relativistic Hartree-Fock calculations including core-polarization effects. For the IC calculations, we use the standard method of least-square fitting from experimental energy levels by means of the Cowan computer code. The inclusion in these calculations of the 5d107p and 5d105f configurations has facilitated a complete assignment of the energy levels in the Pb IV. Transition probabilities, oscillator strengths, and radiative lifetimes obtained are generally in good agreement with the experimental data.  相似文献   

12.
13.
Wavelengths, oscillator strengths, and transition probabilities for the electric dipole transitions between low-lying states (n = 4, 5, 6) of Cu-like ions are presented. The data are calculated from relativistic Hartree-Fock wavefunctions.  相似文献   

14.
For 47 elements in the range 2 ≤ Z ≤ 92, steady-state radiative cooling rates, average charge states 〈Z〉, and mean-square charge states 〈Z2〉 have been calculated for low-density, high-temperature plasmas (ne ? 1016electrons/cm3 and T = 0.002–100 keV). The average-ion model described in the Appendix was used. The 47 materials treated include many materials of interest in controlled fusion research. The results are presented in graphs and tables. The graphs show curves calculated from the model and least-squares polynomial fits to these curves. The tables present coefficients for the least-squares fits.  相似文献   

15.
The energy levels, spontaneous radiative decay rates, and electron impact collision strengths are calculated for Xe XXVII. The data refer to 107 fine-structure levels belonging to the configurations (1s22s22p6)3s23p63d10, 3s23p63d94l, 3s23p53d104l and 3s3p63d104l (l = s, p, d, f). The collision strengths are calculated with a grid of 20 collision energies between 10 and 1500 eV in terms of the energy of the scattered electron, by using the distorted-wave approximation. Effective collision strengths are obtained at six temperatures, Te (eV) = 10, 100, 300, 500, 800 and 1500, by integrating the collision strengths over a Maxwellian electron distribution. Coupled with these atomic data, a hydrodynamic code MED103 can be used to simulate the Ni-like Xe X-ray laser.  相似文献   

16.
Energy levels and lifetimes are reported for all the states of the n = 3 odd and even complexes of Fe XIV, as well as the 2s24l2L states. Data for selected allowed (E1) and forbidden (E2, M1, and M2) transitions between these states are also reported. The results have been calculated using the multiconfiguration Hartree-Fock method with a Breit-Pauli relativistic correction.  相似文献   

17.
A systematic fundamental molecular database for all isotopomeres of the hydrogen molecule (H2, D2, T2, HD, HT, DT) is calculated on the basis of the latest Born-Oppenheimer potential curves and the latest electronic dipole transition moments of hydrogen molecules. Vibrational eigenvalues, Franck-Condon factors, and vibrationally resolved transition probabilities are presented for electronic transitions in each multiplet system up to principal quantum number n = 4. Radiative lifetimes of the vibrational levels in the electronically excited states are obtained from the summation over the optically allowed transitions. In a similar manner, effective transition probabilities and effective radiative lifetimes of electronically excited states are determined assuming that only the lowest vibrational level in the ground state is populated, i.e. the data are directly applicable to molecular gases. Differences between the isotopomeres are discussed briefly.  相似文献   

18.
The fully relativistic configuration interaction method of the FAC code is used to calculate atomic data for multipole transitions in Mg-like Au (Au67+) and Al-like Au (Au66+) ions. Generated atomic data are important in the modeling of M-shell spectra for heavy Au ions and Au plasma diagnostics. Energy levels, oscillator strengths and transition rates are calculated for electric-dipole (E1), electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2) for transitions between excited and ground states 3l−nl3lnl, such that n=4,5,6,7n=4,5,6,7. The local central potential is derived using the Dirac–Fock–Slater method. Correlation effects to all orders are considered by the configuration interaction expansion. All relativistic effects are included in the calculations. Calculated energy levels are compared against published values that were calculated using the multi-reference many body perturbation theory, which includes higher order QED effects. Favorable agreement was observed, with less than 0.15% difference.  相似文献   

19.
We present accurate oscillator strengths and radiative rates for 2173 E1 transitions among the 120 levels belonging to 3s23p4, 3s3p5, and 3s23p3(4So,2Do,2Po)n? configurations where . A configuration interaction approach is employed through the standard CIV3 program. The 114 LS states included in the present calculation generate 250 fine-structure levels belonging to the above configurations below 100,000 cm−1. However, results of only 120 fine-structure levels are presented due to the absence of experimental energy values for the remaining levels. Tabulations of oscillator strengths and radiative rates, and their comparison with other calculations, are presented in the first two tables. In a separate table the oscillator strengths and transition probabilities, in length and velocity gauges, are presented for 2173 E1 transitions, and are arranged in ascending order of wavelength.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号