首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single crystalline ZnO thin film on p-GaN/sapphire (0 0 0 1) substrate, using two different precursors by hydrothermal route at a temperature of 90 °C were successfully grown. The effect of starting precursor on crystalline nature, surface morphology and optical emission of the films were studied. ZnO thin films were grown in aqueous solution of zinc acetate and zinc nitrate. X-ray diffraction analysis revealed that all the thin films were single crystalline in nature and exhibited wurtzite symmetry and c-axis orientation. The thin films obtained with zinc nitrate had a more pitted rough surface morphology compared to the film grown in zinc acetate. However the thickness of the films remained unaffected by the nature of the starting precursor. Sharp luminescence peaks were observed from the thin films almost at identical energies but deep level emission was slightly prominent for the thin film grown in zinc nitrate.  相似文献   

2.
The compositional, structural, microstructural, dc electrical conductivity and optical properties of undoped zinc oxide films prepared by the sol–gel process using a spin-coating technique were investigated. The ZnO films were obtained by 5 cycle spin-coated and dried zinc oxide films followed by annealing in air at 600 °C. The films deposited on the platinum coated silicon substrate were crystallized in a hexagonal wurtzite form. The energy-dispersive X-ray (EDX) spectrometry shows Zn and O elements in the products with an approximate molar ratio. TEM image of ZnO thin film shows that a grain of about 60–80 nm in size is really an aggregate of many small crystallites of around 10–20 nm. Electron diffraction pattern shows that the ZnO films exhibited hexagonal structure. The SEM micrograph showed that the films consist in nanocrystalline grains randomly distributed with voids in different regions. The dc conductivity found in the range of 10−5–10−6 (Ω cm)−1. The optical study showed that the spectra for all samples give the transparency in the visible range.  相似文献   

3.
Hexagonal ZnO nanowires were synthesized on pre-seeded silicon (100) substrates by a simple hydrothermal method at a relatively low temperature of 95 °C without any catalyst or template. The pre-seeded layer was produced using the sol–gel spin coating technique with 1 M zinc acetate in ethanol and ethanolamine. The structural properties of the nanowires were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD pattern indicated that the as-grown ZnO nanowires had the single-phase wurtzite structure, formed along the c-axis. SEM revealed that the nanostructure thin film had wire textures and the synthesis processes importantly influence the final size and shape of the ZnO nanowires. High-resolution transmission electron microscopy (HRTEM) provided further insight into the structure of ZnO nanostructures. The obtained HRTEM image was of the tip of an individual nanowire. The ZnO nanowires highly preferentially grew in the (002) crystal plane. The lattice spacing between adjacent (002) lattice planes was calculated to be 0.52 nm. The optical characteristics of the nanowires were determined from cathodoluminescence (CL) spectra. The CL revealed a fairly high surface state density of ZnO nanowires that grew at reaction concentrations of 0.01–0.25 M.  相似文献   

4.
We have carried out a comparative study of structural, microstructural and magnetic properties of the two sets of Co-doped ZnO samples synthesized using solid state reaction and sol–gel method. Rietveld refinement of the X-ray diffraction data reveals single phase hexagonal wurtzite structure for all the samples, while the tunnelling electron microscopy measurements show the presence of nano-phase in the sol–gel grown Co-doped ZnO samples. It is found that, the microstructure strongly depends on the synthesis method adopted. Samples with higher Co-concentration synthesized by SSR route exhibit antiferromagnetism while SG grown Co-doped ZnO samples exhibit weak ferromagnetic behaviour. Improved magnetic phase in the SG grown samples has been attributed to the grain morphology.  相似文献   

5.
Continuous crystalline films of zinc oxide (ZnO) with thicknesses of 6–10 μm were obtained by electrochemical deposition from aqueous zinc nitrate solutions on silicon substrates with a buffer nickel layer. X-ray diffraction measurements showed that the polycrystalline films possess a hexagonal crystal lattice with predominant (0002) orientation. The obtained ZnO films exhibit strong photoluminescence in the visible spectral range at room temperature.  相似文献   

6.
Zinc oxide (ZnO) nanowires with various morphologies are synthesized by the hydrothermal method on silicon substrates coated with ZnO thin films. The ZnO films are used as the seed layer and are prepared using the sol–gel technique. Experimental results demonstrate that the synthesis of ZnO nanowires is dependent on the crystalline properties of the ZnO seed-layer films. Sol concentration is the controlled parameter for the preparation of ZnO seed-layer films in this study. The ZnO films are found to have the hexagonal wurtzite structure with highly preferred growth along the c-axis at suitable sol concentrations. The vertically aligned ZnO nanowire arrays on the substrates are believed to be the result of the epitaxial growth of the ZnO seed layer. Scanning electron microscopy shows that nanowires with uniform distribution in length, diameter, and density are obtained. X-ray diffraction patterns clearly reveal that the ZnO nanowires are primarily grown along the c-axis direction. Transmission electron microscopy and selected-area electron diffraction measurements show that the nanowires have good crystalline properties. The well-aligned and high surface areas of the ZnO nanowires make them a potential candidate for applications in solar cells, field emission devices, and ultra-sensitive gas sensors.  相似文献   

7.
Transparent zinc oxide (ZnO) films were coated on seed layers prepared by the sol–gel method by chemical solution deposition method. Firstly, seed layers were prepared from zinc acetate and monoethanolamine, 2-methoxyethanol by the sol–gel method on a silicon substrate or a slide glass. Next, the substrate coated with a seed layer was immersed in zinc nitride solution with hexamethylenetetramine, and ZnO films were obtained. The transmittance of the ZnO films depended on the morphology and crystallinity of the seed layers. When the seed layer were dried on a hot plate, the seed layer had flat surface and transparent ZnO film could be obtained on the seed layers dried at temperatures above 200 °C. When the seed layer was prepared from zinc acetate dihydrate dried in a petri dish, the seed layer were smooth without cracks and the transparent ZnO films were obtained at temperature below 100 °C.  相似文献   

8.
ZnO nanorod forests were grown wrapping nylon fibers using a two-step process. In the first step, the formation of ZnO seeds at nylon fiber surfaces was induced by the dip coating of ZnO nanosols; in the second step, the growth of the ZnO seeds into nanorod forests was carried out via a wet chemical route in a bath containing an equimolar solution of zinc nitrate hexahydrate and hexamethylenetetramine. The as-obtained ZnO-coated nylon fibers were characterized by scanning electron microscopy, Energy dispersive X-ray spectrum imaging, and X-ray diffraction, respectively. Thermal gravimetric analysis of the pristine and the ZnO-coated nylon fibers was also conducted.  相似文献   

9.
Zinc oxide (ZnO) thin films were deposited on (100) Si substrates by sol-gel technique. Zinc acetate was used as the precursor material. The effect of different annealing atmospheres and annealing temperatures on composition, structural and optical properties of ZnO thin films was investigated by using Fourier transform infrared spectroscopy, X-ray diffraction, atomic force microscopy and photoluminescence (PL), respectively. At an annealing temperature of 400°C in N2 for 2 h, dried gel films were propitious to undergo structural relaxation and grow ZnO grains. ZnO thin film annealed at 400°C in N2 for 2 h exhibited the optimal structure and PL property, and the grain size and the lattice constants of the film were calculated (41.6 nm, a = 3.253 ? and c = 5.210 ?). Moreover, a green emission around 495 nm was observed in the PL spectra owing to the oxygen vacancies located at the surface of ZnO grains. With increasing annealing temperature, both the amount of the grown ZnO and the specific surface area of the grains decrease, which jointly weaken the green emission. Translated from Journal of Lanzhou University (Natural Science), 2006, 42(1): 67–71 [译自: 兰州大学学报 (自然科学版)]  相似文献   

10.
High quality N-doped ZnO films were grown at different RF powers on glass substrates by plasma-assisted metalorganic chemical vapor deposition. Scanning electron microscopy, X-ray diffraction and Hall analyses were carried out to investigate the effects of RF power variation on surface morphology, crystallinity and electrical properties of the ZnO films. Increasing the RF power resulted in compacter surface morphology and change of the crystallinity as well as incorporation of more N atoms. Films grown at 150 W exhibited the best p-type electrical properties. Moreover, room temperature photoluminescence spectra showed strong emission related to N acceptor.  相似文献   

11.
Zinc oxide thin films were deposited by sol gel technique on glass substrates using different precursors (zinc acetate, zinc nitrate and zinc chloride). In the present work we investigate the precursor nature influence on structural, morphological, optical, electrical properties and photocatalytic activity of ZnO thin films. For this purpose we have used X-rays diffraction (XRD), atomic force microscopy (AFM), UV–visible spectroscopy and Hall effect measurements for films characterization. The obtained results indicated that ZnO films properties are strongly influenced by the nature of the used precursor as reactant. Films photocatalytic activity was evaluated by the photo-degradation of methylene blue (MB) dissolved in aqueous solution under UV-A light. The obtained results indicated that ZnO thin films prepared from zinc acetate are more efficient than those prepared from zinc nitrate and zinc chloride.  相似文献   

12.
Aluminum-doped zinc oxide nanopowders were prepared using a surfactant assisted complex sol–gel method, and were characterized using inductively coupled plasma, X-ray diffraction, scanning electron microscopy/energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and UV–Vis spectroscopy. Al was effectively doped into the ZnO matrix with concentrations up to 6.00 atomic ratio percents (at.%). X-ray diffraction results revealed that all of the nanoparticles had a pure hexagonal wurtzite structure free of any impurities when annealing temperature was below 1273 K. The optical band gap of the nanopowders, which was affected by the Al-doping concentration, reached a maximum of 3.43 eV when ZnO was doped with 4.00 at.% Al. The effect of post-annealing temperature and vacuum conditions on the resistivities of the Al-doped ZnO nanoparticles was also investigated. And the lowest volume resistivity (1.2 Ω cm) was achieved by annealing the Al-doped ZnO nanoparticles in a vacuum at 1173 K for 2 h.  相似文献   

13.
Growth and characterisation of electrodeposited ZnO thin films   总被引:1,自引:0,他引:1  
The electrochemical method has been used to deposit zinc oxide (ZnO) thin films from aqueous zinc nitrate solution at 80 °C onto fluorine doped tin oxide (FTO) coated glass substrates. ZnO thin films were grown between − 0.900 and − 1.025 V vs Ag/AgCl as established by voltammogram. Characterisation of ZnO films was carried out for both as-deposited and annealed films in order to study the effect of annealing. Structural analysis of the ZnO films was performed using X-ray diffraction, which showed polycrystalline films of hexagonal phase with (002) preferential orientation. Atomic force microscopy was used to study the surface morphology. Optical studies identified the bandgap to be ∼ 3.20 eV and refractive index to 2.35. The photoelectrochemical cell signal indicated that the films had n-type electrical conductivity and current-voltage measurements showed the glass/FTO/ZnO/Au devices exhibit rectifying properties. The thickness of the ZnO films was found to be 0.40 μm as measured using the Talysurf instrument, after deposition for 3 min. Environmental scanning electron microscopy was used to view the cross-section of glass/FTO/ZnO layers.  相似文献   

14.
A polymeric sol–gel combustion method has been used to synthesize nanocrystalline hydroxyapatite (HA) powder from calcium nitrate and triethyl phosphate with the addition of NH4OH. The sol–gel combustion process generates phase-pure nanocrystalline HA powder, as characterized using Fourier transform infrared (FTIR), X-ray diffraction (XRD), and transmission electron microscopy (TEM). Sintering of the HA powder compact at 1200°C for 2 h leads to a 93% theoretical dense ceramic body. This method offers an easy route for the preparation of phase-pure nanocrystalline HA powder.  相似文献   

15.
Zinc oxide thin films have been spun coated on p-Si (100) substrates by sol–gel route. These films were annealed at different annealing temperatures from 300 to 1,000 °C in the oxygen ambient. In this way a suitable annealing temperature window for the sol–gel derived ZnO films exhibiting minimum defects (points and dislocations) and better quality (crystal and optical) was investigated. The structural and optical features of ZnO thin films have been examined by X-ray diffraction, atomic force microscopy, UV–Vis spectroscopy, and photoluminescence spectra. The results revealed that the crystallization in the films initiated at 300 °C, improved further with annealing. All the deposited films exhibited wurtzite phase with c-axis orientations. The variations in the position of characteristic (002) peak, stress, strain and lattice parameters are investigated as a function of annealing temperature. The optical band gap is not significantly affected with annealing as observed by UV–Vis transmission spectroscopy. The Photoluminescence spectra exhibited three luminescence centers. The near band edge esmission was observed in UV region which enhanced with the heat treatment, is an indication of improvement in the optical quality of films. The other two visible emissions are related to native defects in ZnO lattice were appeared only for higher annealing (≥700 °C).  相似文献   

16.
Homogeneous Ba–Ti–B–Si, Ba–Ti–Al–Si and Ba–Ti–B gels have been successfully prepared by the sol–gel process. A novel method is presented for fabricating barium titanate glass-ceramics by sintering the gel powders with small barium titanate crystallites. The structural development, grain size, crystallization process and dielectric properties were systematically studied by differential thermal analysis, thermogravimetric analysis, X-ray diffraction techniques, scanning electron microscopy and dielectric measurements. The glass-ceramic samples were sintered at lower temperatures compared to the barium titanate ceramic sintering, and showed improved dielectric properties. It was found that the small size effect of the barium titanate grains on the dielectric constant in the glass-ceramics was quite evident. Ferroelectric hysteresis loop analyses were also performed to manifest the ferroelectric nature of the barium titanate grains in situ grown from the gels. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

17.
Zn(1 − x)CdxO solid solutions with a composition ranging from pure ZnO up to x = 0.062 have been grown on ZnO and c-plane sapphire substrates by using metal organic chemical vapor deposition. The optical transmission spectra were used to estimate the cadmium mole fraction of the solid solutions. The lattice deformation and morphology of these films were examined in detail using high resolution X-ray diffraction and atomic force microscopy as Cd incorporation and used substrate. Our study reveals significant lattice deformation from x ≥ 0.7%. The atomic force microscopy images show facetted grains for films grown on ZnO substrate but rather round for c-plane sapphire substrate. The grain shape is controlled by the presence of the ionic charges on the polar surface of ZnO which is disturbed by cadmium incorporation and also the employed substrate material.  相似文献   

18.
Nanocrystalline Zn1−x Ni x O (x = 0.00, 0.02, 0.04, 0.06, 0.08) powders were synthesized by a simple sol–gel autocombustion method using metal nitrates of zinc, nickel and glycine. Structural and optical properties of the Ni-doped ZnO samples annealed at 800 °C are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive analysis using X-rays (EDAX), UV–visible spectroscopy and photoluminescence (PL). X-ray diffraction analysis reveals that the Ni-doped ZnO crystallizes in a hexagonal wurtzite structure and secondary phase (NiO) was observed with the sensitivity of XRD measurement with the increasing nickel concentration (x ≥ 0.04). The lattice constants of Ni-doped ZnO nanoparticles increase slightly when Ni2+ is doped into ZnO lattice. The optical absorption band edge of the nickel doped samples was observed above 387 nm (3.20 eV) along with well-defined absorbance peaks at around 439 (2.82 eV), 615(2.01 eV) and 655 nm (1.89 eV). PL measurements of Ni-doped samples illustrated the strong UV emission band at ~3.02 eV, weak blue emission bands at 2.82 and 2.75 eV, and a strong green emission band at 2.26 eV. The observed red shift in the band gap from UV–visible analysis and near band edge UV emission with Ni doping may be considered to be related to the incorporation of Ni ions into the Zn site of the ZnO lattice.  相似文献   

19.
Zinc oxide (ZnO) thin films were grown on silicon substrate by RF (radio frequency) magnetron sputtering.Surface topography of these films exhibited a nanostructured granular appearance with the size of individual grains between 50 to 100 nm.Corresponding cross-sectional electron micrographs revealed columnar grains in the form of aggregated nanorods/wires with length of about 500 nm,similar to the thickness of these thin films of ZnO nucleated and grown vertically on the silicon substrate.High resolution l...  相似文献   

20.
High-purity ZnO nanorods have been synthesized via a two-step route using zinc acetate as a precursor without any surfactant and additive. In this method, ZnCO3 fibers were first formed in the CO2-ethanol solution, which directed the formation of ZnO nanorods by subsequent treatment in KOH aqueous solution. The as-prepared nanorods were fully characterized by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and Fourier transform Infrared spectroscopy. It was found that the as-obtained ZnO nanorods were single crystals with uniform diameter around 150 nm and length of 4 microm. The nanorod crystals were prismatic with hexagonal cross sections, consistent with the wurtzite lattice structure. Moreover, the sensing properties of the as-prepared ZnO nanorods were also investigated. It was demonstrated that they exhibited good performance for detecting ethanol vapor even at 380 and 250 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号