首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnetic nanoparticles (Fe304) were prepared by chemical precipitation method using Fe^2+ and Fe^3+ salts with sodium hydroxide in the nitrogen atmosphere. Fe3O4 nanoparticles were coated with human serum albumin(HSA) for magnetic resonance imaging as contrast agent. Characteristics of magnetic particles coated or uncoated were carried out using scanning electron microscopy and X-ray diffraction. Zeta potentials, package effects and distributions of colloid particles were measured to confirm the attachment of HSA on magnetic particles. Effects of Fe3O4 nanoparticles coated with HSA on magnetic resonance imaging were investigated with rats. The experimental results show that the adsorption of HSA on magnetic particles is very favorable to dispersing of magnetic Fe3O4 particles, while the sizes of Fe3O4 particles coated are related to the molar ratio of Fe3O4 to HSA. The diameters of the majority of particles coated are less than 100 nm. Fe3O4 nanoparticle coated with HSA has a good biocompatibility and low toxicity. This new contrast agent has some effects on the nuclear magnetic resonance imaging of liver and the lowest dosage is 20μmol/kg for the demands of diagnosis.  相似文献   

2.
A composite material (Fe3O4/Coke) using coke supported Fe3O4 magnetic nanoparticles was successfully prepared via an in-situ chemical oxidation precipitation method and characterized by SEM, XRD, Raman, and FTIR. The results showed that the Fe3O4 nanoparticles existed steadily on the surface of coke, with better dispersing and smaller particle size. The catalytic ability of Fe3O4/Coke were investigatied by degrading p-nitrophenol (P-NP). The results showed that the apparent rate constant for the P-NP at 1.0 g·L?1 catalyst, 30 mmol·L?1 H2O2, pH=3.0, 30 °C and the best ratio of Coke/Fe3O4 0.6, was evaluated to be 0.027 min–1, the removal rate of CODCr was 75.47%, and the dissolubility of Fe was 2.42 mg·L–1. Compared with pure Fe3O4, the catalytic ability of Fe3O4/Coke in the presence of H2O2 was greatly enhanced. And Fe3O4/Coke was a green and environmental catalyst with high catalytic activity, showing a good chemical stability and reusability.  相似文献   

3.
In order to obtain a new precursor for LiFePO4, Fe2P2O7 with high purity was prepared through solid phase reaction at 650 ℃ using starting materials of FeC2O4 and NH4H2PO4 in an argon atmosphere. Using the as-prepared Fe2P2O7, Li2CO3 and glucose as raw materials, pure LiFePO4 and LiFePO4/C composite materials were respectively synthesized by solid state reaction at 700 ℃ in an argon atmosphere. X-ray diffractometry and scanning electron microscopy(SEM) were employed to characterize the as-prepared Fe2P2O7, LiFePO4 and LiFePO4/C. The as-prepared Fe2P2O7 crystallizes in the Cl space group and belongs to β-Fe2P2O7 for crystal phase. The particle size distribution of Fe2P2O7 observed by SEM is 0.4-3.0 μm. During the Li^+ ion chemical intercalation, radical P2O7^4- is disrupted into two PO4^3- ions in the presence of O^2-, thus providing a feasible technique to dispose this poor dissolvable pyrophosphate. LiFePO4/C composite exhibits initial charge and discharge capacities of 154 and 132 mA·h/g, respectively.  相似文献   

4.
Highly pure active γ-Al2O3 nanoparticles were synthesized from aluminum nitrate and ammonium carbonate with a little surfactant by chemical precipitation method. The factors affecting the synthesis process were studied. The properties of γ-Al2O3 nanoparticles were characterized by DTA, XRD, BET, TEM, laser granularity analysis and impurity content analysis. The results show that the amorphous precursor Al(OH)3 sols are produced by using 0.1 mol/L Al(NO3)3 · 9H2O and 0.16 mol/L (NH4)2CO3 · H2O reaction solutions, according to the volume ratio 1.33, adding 0.024% (volume fraction) surfactant PEG600, and reacting at 40 °C, 1 000 r/min stirring rate for 15 min. Then, after stabilizing for 24 h, the precursors were extracted and filtrated by vacuum, washed thoroughly with deionized water and dehydrated ethanol, dried in vacuum at 80°C for 8 h, final calcined at 800 °C for 1 h in the air, and high purity active γ-Al2O3 nanoparticles can be prepared with cubic in crystal system, O H 7 -FD3M in space group, about 9 nm in crystal grain size, about 20 nm in particle size and uniform size distribution, 131. 35 m2/g in BET specific surface area, 7 – 11 nm in pore diameter, and not lower than 99.93% in purity. Foundation item: Project(03JJY3015) supported by the Natural Science Foundation of Hunan Province  相似文献   

5.
Fe2O3/SiO2 nano-composite films were prepared by sol-gel technique combining heat treatment in the range of 100–900 °C. The particle size was observed by FE-SEM. Optical properties of the films were investigated by UV-visible spectra. Structural and magnetic characteristics were investigated through FT-IR and VSM. The transparency of the Fe2O3/SiO2 nano-composite films decreased with the content of the Fe2O3. Water and organic solvent in the films were evaporated with heat treatment, so the transparency of the films was enhanced under high temperature. It is also found that the saturation magnetization (M s) of the films increases with the temperature. As the content of the Fe2O3 increases, when the content of the Fe2O3 is around 30wt%, the M s of the films has a maximum value.  相似文献   

6.
Ni-Co-Fe2O3 composite coatings were electrodeposited using cetyltrimethylammonium bromide (CTAB)-modified Watt’s nickel bath with Fe2O3 particles dispersed in it. The effects of the plating parameters on the chemical composition, structural and morphological characteristics of the electrodeposited Ni-Co-Fe2O3 composite coatings were investigated by energy dispersive X-ray (EDS) spectroscopy, X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The results reveal that Fe2O3 particles can be codeposited in the Ni-Co matrix. The codeposition of Fe2O3 particles with Ni-Co is favoured at high Fe2O3 particle concentration and medium stirring, and the deposition of Co is favoured at high concentration of CTAB. Moreover, the study of the textural perfection of the deposits reveals that the presence of particles leads to the worsening of the quality of the observed 〈220〉 preferred orientation. Composites with high concentration of embedded particles exhibit a preferred crystal orientation of 〈111〉. The more the embedded Fe2O3 particles in the metallic matrix, the smaller the sizes of the crystallite for the composite deposits.  相似文献   

7.
Fe3O4 magnetic nanoparticles were prepared by co-precipitation of Fe^2+ and Fe^3+ in an ammonia solution, and its size was about 36 nm measured by an atomic force microscope. Fe3O4 magnetic nanoparticles were modified by L-dopa or dopamine using sonication method. The analysis of FTIR clearly indicated the formation of Fe-O-C bond. Direct immobilization of trypsin (EC: 3.4.21.4) on Fe3O4 magnetic nanoparticles with L-dopa and dopamine spacer was investigated using glutaraldehyde as a coupling agent. No significant changes in the size and magnetic property of the three kinds of magnetic nanoparticles linked with or without trypsin were observed. The existence of the spacer molecule on magnetic nanoparticles could greatly improve the activity and the storage stability of bound trypsin through increasing the flexibility of enzyme and changing the microenvironment on nanoparticles surface compared to the naked magnetic nanoparticles.  相似文献   

8.
Ca3Co4O9 ceramics were prepared using the sol-gel process with ordinary pressing sintering and their thermoelectric properties were measured from room temperature to 673 K. The experimental results show that single phase Ca3Co4O9 can be fabricated at 750–900 °C in different citrate acid molar proportions for 0.2–1.0. For all the oxides, both the Seebeck coefficients S and the electrical conductivities κ increase with the increasing temperature. The Seebeck coefficients S are all positive. The thermal conductivities k increase with the increasing temperature also and the lattice thermal conductivity κ l plays an important role to the thermal conductivity κ. The citrate acid molar proportions have a large influence on the particle sizes, which influences the thermoelectric properties of the ceramics. The figure of merit increases with the increasing temperature and reaches 4.5×10−5 K−1 at 573 K for the sample in the citrate acid molar proportion of 0.46.  相似文献   

9.
The effects of B2O3 addition on both the sintering behavior and microwave dielectric properties of CaO-B2O3-SiO2 (CBS) glass ceramics were investigated by Fourier transform infrared spectroscopy (FTIR),X-ray diffractometry (XRD) and scanning electron microscopy (SEM).The results show that the increasing amount of B2O3 causes the increase of the contents of [BO3],[BO4] and [SiO4],which deduces the increase of CaB2O4 and α-SiO2 and the decrease of CaSiO3 correspondingly.No new phase is observed throughout the...  相似文献   

10.
B2O3-BaO-ZnO glass was prepared by using conventional melt quenching technology. The forming regularity and the relationship between the composition and the property of B2O3-BaO-ZnO glass were investigated. The results show that the composition range for forming B2O3-BaO-ZnO glass is very wide, but the content of B2O3 has a limit within mole fraction of 25%-75%. When the content of B2O3 is over the limit, the melt will be divided into two phases with different compositions and structures, whereas too low content of B2O3 will result in the crystallization of the melt during the cooling process. The thermal expansion coefficient, the transition temperature and the resistivity of the glass at room temperature are (5-10)×10-6 ℃-1, 480-620 ℃ and (1.5-3.0)×1010 Ω·m, respectively.  相似文献   

11.
The temperature dependence on the reaction of desulfurization reagent CaCO3 and SO2 in O2/CO2 coal combustion was investigated by thermogravimetric analysis, X-ray diffraction measurement and pore structure analysis. The results show that the conversion of the reaction of CaCO3 and SO2 in air is higher at 500–1 100 °C and lower at 1 200 °C compared with that in O2/CO2 atmosphere. The conversion can be increased by increasing the concentration of SO2, which causes the inhibition of CaSO4 decomposition and shifting of the reaction equilibrium toward the products. XRD analysis of the product shows that the reaction mechanism of CaCO3 and SO2 differs with temperature in O2/CO2 atmosphere, i.e. CaCO3 directly reacts with SO2 at 500 °C and CaO from CaCO3 decomposition reacts with SO2 at 1 000 °C. The pore analysis of the products indicates that the maximum specific surface area of the products accounts for the highest conversion at 1 100 °C in O2/CO2 atmosphere. The results reveal that the effect of the atmosphere on the conversion is temperature dependence.  相似文献   

12.
LiNi0.5Mn1.5O4 was prepared under various conditions by one-step solid-state reaction in air and its properties were investigated by X-ray diffractormetry (XRD), scanning electron microscopy (SEM) and electrochemical measurement. XRD patterns show that LiNi0.5Mn1.5O4 synthesized under various conditions has cubic spinel structure. SEM images exhibit that the particle size increases with increasing calcination temperature and time. Electrochemical test shows that the LiNi0.5Mn1.5O4 calcined at 700 °C for 24 h delivers up to 143 mA · h/g, and the capacity retains 132 mA · h/g after 30 cycles. Foundation item: Project (76600) supported by Postdoctoral Science Foundation of Central South University  相似文献   

13.
The nanocomposite xCoFe2O4-(1−x)BaTiO3 (x=0.2, 0.3, 0.4, 0.5, molar fraction) fibers with fine diameters and high aspect ratios (length to diameter ratios) were prepared by the organic gel-thermal decomposition process from citric acid and metal salts. The structures and morphologies of gel precursors and fibers derived from thermal decomposition of the gel precursors were characterized by Fourier transform infrared spectroscopy, X-ray diffractometry and scanning electron microscopy. The magnetic properties of the nanocomposite fibers were measured by vibrating sample magnetometer. The nanocomposite fibers consisting of ferrite (CoFe2O4) and perovskite (BaTiO3) are formed at the calcination temperature of 900 °C for 2 h. The average grain sizes of CoFe2O4 and BaTiO3 in the nanocomposite fibers increase from 25 to 65 nm with the calcination temperature from 900 to 1 180 °C. The single fiber constructed from these nanograins of CoFe2O4 and BaTiO3 has a necklace-like morphology. The saturation magnetization of the nanocomposite 0.4CoFe2O4-0.6BaTiO3 fibers increases with the increase of CoFe2O4 grain size, while the coercivity reaches a maximum value when the average grain size of CoFe2O4 is around the critical single-domain size of 45 nm obtained at 1 000 °C. The saturation magnetization and remanence of the nanocomposite xCoFe2O4-(1−x)BaTiO3 (x=0.2, 0.3, 0.4, 0.5) fibers almost exhibit a linear relationship with the molar fraction of CoFe2O4 in the nanocomposites.  相似文献   

14.
MXene 具有较大比表面积和优异的导电性, 当与金属氧化物半导体结合时可以抑制片层团聚, 还可以大大提高载流子转移速率, 提高气敏性能。通过简单的水热和煅烧两步法成功合成了Fe2O3/Nb2O5/Nb4C3Tx 三元复合材料。通过表征, Fe2O3 微米球分布在 MXene 纳米片层之间。气敏测试结果表明, 与原始Fe2O3相 比, Fe2O3/Nb2O5/Nb4C3Tx 传感器对丙酮的响应能力有明显的提高。传感器灵敏度高, 选择性较好, 对环境中 浓度为 5 ×10?6 的丙酮响应高 (Ra /Rg = 7.81, 30% RH), 响应和恢复速度快, 具有出色的重复性和长期稳定性。Fe2O3/Nb2O5/Nb4C3Tx 传感器具有良好的气敏性能, 主要因为三元复合材料提供了较大比表面积和丰富的氧空位, 增强了活性位点, 使得气体易于在传感器表面扩散, 为开发丙酮敏感复合材料提供了参考。  相似文献   

15.
The surface organic modification of Fe3O4 nanoparticles with silane coupling reagent KH570 was studied. The modified and unmodified nanoparticles were characterized by FT-IR, XPS and TEM. The spectra of FT-IR and XPS revealed that KH570 was coated onto the surface of Fe3O4 nanoparticles to get Fe-O- Si bond and an organic coating layer also was formed. Fe3O4 nanoparticles were spheres partly with mean size of 18,8 nm studied by TEM, which was consistent with the result 17.9 nm calculated by Scherrer's equation. KH570 was adsorbed on surface and formed chemistry bond to be steric hindrance repulsion which prevented nanoparticles from reuniting. Then glycol-based Fe3O4 magnetic liquids dispersed stably was gained.  相似文献   

16.
Nanometer 3Y-TZP/20%Al2O3 (mass fraction) composite powders prepared by the chemical coprecipitation method were pressureless sintered at 1550 °C for 2 h. Effects of calcining temperatures at 800 °C, 1 000 °C, and 1 200 °C on phase structure, relative density, and Vicker’s hardness of the sintered bodies were studied. The results show that 1 000 °C was the optimal calcining temperature, and the powder calcined was composed of tetragonal zirconia with the Scherrer crystalline size of 6.3nm. The relative density was up to 98.5% under pressureless sintering, and the sintered body was t-ZrO2 (without m-ZrO2)+α-Al2O3 with the average size of 0.4 μm. Foundation item: State Key Laboratory for Powder Metallurgy(No.9706-36) Biography of the first author: YIN Bang-yao, born in 1966, majoring in advanced ceramic materials.  相似文献   

17.
CoFe2O4 nanoparticles (NPs) were synthesized by coprecipitation method using FeCl3·6H2O and CoCl2·6H2O as precursors.The synthesized conditions were optimized,such as added means of precipitator,quantity of precipitator,the mol ratio of Fe 3+ to Co2+,reaction temperature and pH value.The synthesized material was characterized by XRD,TEM,FTIR,EDS,Raman and its magnetic properties were studied by VSM.The experimental results confirm that the sample is cubic spinel structure CoFe2O4 with a narrow size distribution and a good dispersion feature.CoFe2O4 NPs with well-controlled shape and size was obtained at 70℃.The magnetic properties indicate superparamagnetic behavior and good saturated magnetization.  相似文献   

18.
The preparation technique and properties of Ag-type inorganic antibiotic material carried by Al2O3 were studied. The results show that the material has good antibiotic and safety properties, the acute toxicity taken by stomata is LD 50>8 000 mg/kg (little and big white rats), and the normal quantity in subacute toxicity test is 80 mg/(kg · d). The better mass fraction of doping Ag2O in antibiotic material carried by Al2O3 is 4%–8%, and the optimal sintering temperature is from 1 000 °C to 1 100 °C. Foundation item: Project (2002AA327090) supported by National High Technology Research and Development Program of China  相似文献   

19.
Solubility of Nb2O5 and leaching behaviors of Nb and Ta from niobite in KOH solution have been investigated in order to develop an alkali hydrothermal leaching process of Nb and Ta. The solubility of Nb2O5 was measured in the range of 40 °C to 200 °C at various molar ratios of K2O to Nb2O5(n(K2O)/n(Nb2O5)). It has been found that Nb2O5 shows the maximum solubility at the solution composition of n(K2O)/n(Nb2O5)=4/3 at a given temperature; the rise of temperature increases the solubility of Nb2O5 below 120 °C, but decreases it above 120 °C. The leaching behaviors of Nb and Ta were studied in the range of 150 °C to 250 °C and 0.1 MPa to 5 MPa. With the rise of temperature, the leaching degree increases when the leaching temperature is below 200 °C, but it decreases when the leaching temperature is above 200 °C. The maximum leaching degree is about 90% at 200 °C. It was proved that the alkali hydrothermal leaching process is effective for the recovery of Nb and Ta from niobite concentrate. Foundation item: The Key Project of Science and Technology Agency of Japan, 1994 Biography of the first author: ZHOU Kang-gen, doctor of engineering, professor, born in 1963, majoring in extractive metallurgy of rare metals and application of membrane separation technology.  相似文献   

20.
Sintering of the NiFe2O4-10NiO/xNi Cermet   总被引:1,自引:0,他引:1  
The sintering behavior of NiFe2 O4-10NiO/xNi cermet which was used as the most prospective inert anode materials for aluminum electrolysis was studied by examining the effects of raw powder particle size, sintering temperature, and the contents of Ni. The results show that fine particle size enables the powder to have high driving force for sintering. High temperature is beneficial to densification, but the ultra-high temperature does harm to the improvement of the density. The samples of NiFe2O4-10NiO/SNi has the highest relative density of 97.28 % when it is sintered at 1 350 ℃, but it decreases to 95.23 % when sintered at 1 400 ℃. Low addition of Ni has a great help to the sintering of NiFe2 O4-10NiO matrix. When the samples are sintered at 1 350 ℃ and the mass fraction of Ni is 5%, the highest relative density is gained, but the density decreases with the further increase of Ni contents. The low density of the sintered samples of NiFe2 O4-10NiO/17Ni is attributed to the high volume fraction of pores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号