首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Purpose: In this study, a thermosensitive in situ gelling vehicle was prepared to increase the precorneal resident time and the bioavailability of methazolamide (MTA). Method: Poloxamer analogs were used as the gelling agents, and the in situ gel was obtained by using a cold method. The gelation temperature, rheological properties, in vitro release as well as in vivo evaluation (the elimination of MTA in aqueous humor and intraocular-lowering effect) of the optimized formulations were investigated. Results: The optimum concentrations of poloxamer analogs for the in situ gel-forming delivery system were 21% (w/w) poloxamer 407 and 10% (w/w) poloxamer P188. This formulation was able to flow freely under nonphysiological conditions and underwent sol–gel transition in the cul-de-sac upon placement into the eye. In vitro release studies demonstrated a diffusion-controlled release of MTA from the poloxamer solutions over a period of 10 hours. In vivo evaluation indicated that the poloxamer solutions had a better ability to retain drug than MTA eyedrops did. Conclusion: These results suggested that in situ gelling ophthalmic drug delivery system may hold some promise in ocular MTA delivery.  相似文献   

2.
The aim of this study was to evaluate the potential of an in situ gelling pectin formulation as a vehicle for the oral sustained delivery of theophylline and cimetidine. In vitro studies demonstrated diffusion-controlled release of theophylline from 1, 1.5, and 2% w/v pectin gels. Release of this drug from 1.5% w/v pectin gels formed in situ in rabbit stomach was sustained over a period of 12 hours giving a theophylline bioavailability some seven fold higher than when administered from a commercial syrup. In contrast, interactions between cimetidine and pectin led to weak gelation of the pectin sols that prevented any meaningful determination of in vitro release characteristics. Similarly, in vivo release profiles from pectin formulations containing cimetidine were similar to that from a solution of this drug in buffer, indicative of weak gelation. Examination of the content of the rabbit stomach 5 hours after administration of 1.5% w/v pectin sols containing drug confirmed gel formation, but gels containing cimetidine were noticeably softer than those containing theophylline.  相似文献   

3.
Ocular poloxamer-based ciprofloxacin hydrochloride in situ forming gels   总被引:1,自引:0,他引:1  
The purpose of this study was to develop poloxamer-based in situ gelling formulations of ciprofloxacin hydrochloride (HCl) aiming at prolonging corneal contact time, controlling drug release, enhancing ocular bioavailability, and increasing patient compliance. The in situ forming gels were prepared using different concentrations of poloxamer 407 (P407) and poloxamer 188 (P188). Mucoadhesives such as hydroxypropylmethyl cellulose (HPMC) or hydroxyethyl cellulose (HEC) were added to the formulations to enhance the gel bioadhesion properties. The prepared formulations were evaluated for their in vitro drug release, sol-gel transition temperature, rheological behavior, and mucoadhesion force. The in vivo antimicrobial efficacy of selected ciprofloxacin HCl in situ gelling formulations was studied on infected rabbit's eyes and compared with that of the marketed conventional eye drops. The gelation temperature of the prepared formulations ranged from 28.00 to 34.03 degrees C. Increasing the concentrations of P407, HPMC, and HEC increased the viscosity and mucoadhesion force of the preparations and decreased the in vitro drug release. Ciprofloxacin HCl in situ forming gel formulae composed of P407/P188/HPMC (18/13/1.5%, wt/wt), and P407/P188/HEC (18/13/0.5%, wt/wt) showed optimum release and mucoadhesion properties and improved ocular bioavailability as evidenced by an enhanced therapeutic response compared with the marketed conventional eye drops.  相似文献   

4.
ABSTRACT

The aim of this study was to evaluate the potential of an in situ gelling pectin formulation as a vehicle for the oral sustained delivery of theophylline and cimetidine. In vitro studies demonstrated diffusion-controlled release of theophylline from 1, 1.5, and 2% w/v pectin gels. Release of this drug from 1.5% w/v pectin gels formed in situ in rabbit stomach was sustained over a period of 12 hours giving a theophylline bioavailability some seven fold higher than when administered from a commercial syrup. In contrast, interactions between cimetidine and pectin led to weak gelation of the pectin sols that prevented any meaningful determination of in vitro release characteristics. Similarly, in vivo release profiles from pectin formulations containing cimetidine were similar to that from a solution of this drug in buffer, indicative of weak gelation. Examination of the content of the rabbit stomach 5 hours after administration of 1.5% w/v pectin sols containing drug confirmed gel formation, but gels containing cimetidine were noticeably softer than those containing theophylline.  相似文献   

5.
The purpose of this study was to develop poloxamer-based in situ gelling formulations of ciprofloxacin hydrochloride (HCl) aiming at prolonging corneal contact time, controlling drug release, enhancing ocular bioavailability, and increasing patient compliance. The in situ forming gels were prepared using different concentrations of poloxamer 407 (P407) and poloxamer 188 (P188). Mucoadhesives such as hydroxypropylmethyl cellulose (HPMC) or hydroxyethyl cellulose (HEC) were added to the formulations to enhance the gel bioadhesion properties. The prepared formulations were evaluated for their in vitro drug release, sol–gel transition temperature, rheological behavior, and mucoadhesion force. The in vivo antimicrobial efficacy of selected ciprofloxacin HCl in situ gelling formulations was studied on infected rabbit's eyes and compared with that of the marketed conventional eye drops. The gelation temperature of the prepared formulations ranged from 28.00 to 34.03°C. Increasing the concentrations of P407, HPMC, and HEC increased the viscosity and mucoadhesion force of the preparations and decreased the in vitro drug release. Ciprofloxacin HCl in situ forming gel formulae composed of P407/P188/HPMC (18/13/1.5%, wt/wt), and P407/P188/HEC (18/13/0.5%, wt/wt) showed optimum release and mucoadhesion properties and improved ocular bioavailability as evidenced by an enhanced therapeutic response compared with the marketed conventional eye drops.  相似文献   

6.
The system was designed to use Poloxamer as a vehicle for ophthalmic drug delivery using in situ gel formation property. To enhance the wound healing and cell adhesion as well as transparency of Poloxamer hydrogel, chondroitin 6-sulfate (C6S) was introduced into Poloxamer. For this purpose, mono amine-terminated Poloxamer (MATP), which was end-capped with ethylene amine group only in one side of terminal hydroxyl groups of Poloxamer, was synthesized. Subsequently, C6S-graft-Poloxamer copolymer (C6S-g-Poloxamer) was prepared by reaction between the amine groups of MATP and carboxyl groups of C6S in the presence of 1-ethyl-3-(3-dimethylaminopropyl)-carboimide (EDC). The coupling of MATP with C6S was clarified by 1H-NMR and FT-IR spectroscopy. The gelation temperature of graft copolymers was determined by measuring the temperature at which immobility of the meniscus in each solution was first noted. Release behavior of ciprofloxacin from C6S-g-Poloxamer hydrogel in vitro was investigated as a function of C6S content in the graft copolymer by a spectrophotometric assay at 287 nm using an UV spectrophotometer. Differences in the adhesion and morphology of human lens cell between Poloxamer- and C6S-g-Poloxamer-coated surfaces were also investigated. The gelation temperatures of C6S-g-Poloxamer copolymers were lowered with increasing of the concentration of the copolymer and decreasing of C6S content. The release of ciprofloxacin from the graft copolymer was sustained compared with Poloxamer itself and decreased with increasing the content of C6S in the copolymer due to the in situ gel formation of the copolymer and viscous properties of C6S. Human lens cells (B3) adhered to C6S-g-Poloxamer-coated surface were observed as transformed shapes after 2 days. The bioadhesive and thermally gelling of these graft copolymers will be expected to be an excellent drug carrier for the prolonged delivery to surface of the eye.  相似文献   

7.
Amongst the various routes of drug delivery, the field of ocular drug delivery is one of the most interesting and challenging endeavors facing the pharmaceutical scientist. Recent research has focused on the characteristic advantages and limitations of the various drug delivery systems, and further research will be required before the ideal system can be developed. Administration of drugs to the ocular region with conventional delivery systems leads to short contact time of the formulations on the epithelium and fast elimination of drugs. This transient residence time involves poor bioavailability of drugs which can be explained by the tear production, non-productive absorption and impermeability of corneal epithelium. Anatomy of the eye is shortly presented and is connected with ophthalmic delivery and bioavailability of drugs. In the present update on ocular dosage forms, chemical delivery systems such as prodrugs, the use of cyclodextrins to increase solubility of various drugs, the concept of penetration enhancers and other ocular drug delivery systems such as polymeric gels, bioadhesive hydrogels, in-situ forming gels with temperature-, pH-, or osmotically induced gelation, combination of polymers and colloidal systems such as liposomes, niosomes, cubosomes, microemulsions, nanoemulsions and nanoparticles are discussed. Novel ophthalmic delivery systems propose the use of many excipients to increase the viscosity or the bioadhesion of the product. New formulations like gels or colloidal systems have been tested with numerous active substances by in vitro and in vivo studies. Sustained drug release and increase in drug bioavailability have been obtained, offering the promise of innovation in drug delivery systems for ocular administration. Combining different properties of pharmaceutical formulations appears to offer a genuine synergy in bioavailability and sustained release. Promising results are obtained with colloidal systems which present very comfortable conditions of use and prolonged action.  相似文献   

8.
Preparation and evaluation of sustained ophthalmic gel of enoxacin   总被引:2,自引:0,他引:2  
The poor bioavailability and therapeutic response exhibited by conventional ophthalmic solutions due to rapid precorneal elimination of the drug may be overcome by the use of a gel system. The present work describes the formulation and evaluation of an ophthalmic delivery system containing an antibacterial agent, enoxacin, based on the concept of ophthalmic sustained gel, in which 2-hydroxypropyl-beta-cyclo-dextrin (HP-beta-CD) was used as a penetration enhancer in combination with hydroxypropylmethylcellulose (Methocel F4M) which acted as a vehicle. The developed formulation was therapeutically efficacious, nonirritant, and provided sustained release of the drug over 8 h period in vitro and 7 h period in vivo. The developed system is a viable alternative to conventional eye drops.  相似文献   

9.
The objective of this study was to develop a novel floating in situ gel system for sustained drug delivery of acetohydroxamic acid (FIGA) for eradication of Helicobacter pylori (H. pylori). The FIGA was prepared by dissolving the different concentration of gellan in deionized water at 80 degrees C. Different concentration of drug and calcium carbonate as floating agents were dispersed with stirring. In vitro results revealed that in situ gelling formulation forms rigid gels instantaneously and floated for longed period time of time in SGF pH 1.2. The formulation parameters, such as concentration of polymer, concentration of calcium carbonate, and concentration of drug, affected the in vitro drug release characteristic significantly. Absence of drug-polymer interaction was confirmed by differential scanning calorimetry analysis. The in vivo H. pylori clearance efficacy of prepared FIGA in reference to acetohydroxamic acid suspension following repeated oral administration to H. pylori-infected Mongolian gerbils was examined by microbial culture method. FIGA showed a significant anti-H. pylori effect in the in vivo gerbil model. It was noted that the required amount of acetohydroxamic acid for eradication of H. pylori was very less in FIGA than in the corresponding acetohydroxamic acid suspension. From the above results, it was concluded that the floating in situ gelling system has feasibility for forming rigid gels in the stomach and eradicated H. pylori from the gastrointestinal tract more effectively than acetohydroxamic acid suspension because of the prolonged gastrointestinal residence time of the formulation.  相似文献   

10.
ABSTRACT

The poor bioavailability and therapeutic response exhibited by conventional ophthalmic solutions due to rapid precorneal elimination of the drug may be overcome by the use of a gel system. The present work describes the formulation and evaluation of an ophthalmic delivery system containing an antibacterial agent, enoxacin, based on the concept of ophthalmic sustained gel, in which 2-hydroxypropyl-beta-cyclo-dextrin (HP-β-CD) was used as a penetration enhancer in combination with hydroxypropylmethylcellulose (Methocel F4M) which acted as a vehicle. The developed formulation was therapeutically efficacious, nonirritant, and provided sustained release of the drug over 8 h period in vitro and 7 h period in vivo. The developed system is a viable alternative to conventional eye drops.  相似文献   

11.
This study has been conducted to determine whether the rheological differences depending on gelling and treatment conditions could have an influence on drug availability. Lipogels with constant composition were obtained by gelling olive oil with monodiglycerides at rest, under stirring, and milled after gelling. The considerable differences in rheological characteristics produced significant differences on in vitro drug release tests, whereas a lesser influence was observed on in vitro simulated absorption test. The rheological differences appeared not to influence in vivo drug availability. Also, rheological differences owing to the concentration of the gelling agent showed no significant influence on in vivo availability.  相似文献   

12.
Background: Several in situ gel-forming systems have been developed to prolong the precorneal residence time of a drug and to improve ocular bioavailability. Poloxamer 407 with its thermoreversible gelation and surface active properties was utilized to formulate a novel dorzolamide hydrochloride in situ gel nanoemulsion (NE) delivery system for ocular use. Objective: Improvement of both ocular bioavailability and duration of action for dorzolamide hydrochloride was the aim of this study. Methods: Physicochemical properties, in vitro drug release studies and biological evaluation of the prepared NEs were investigated. Results: The optimum formulation of in situ gel NE consisted of Triacetin (7.80%), Poloxamer 407 (13.65%), Poloxamer 188 (3.41%), Miranol C2M (4.55%), and water (70.59%). Biological evaluation of the designed dorzolamide formulation on normotensive albino rabbits indicated that this formulation had better biological performance, faster onset of action, and prolonged effect relative to either drug solution or the market product. The formula showed a superior pharmacodynamic activity compared to the in situ gel dorzolamide eye drops. This indicated the effectiveness of the in situ gel properties of poloxamer 407, besides formulating the drug in an NE form for improving the therapeutic efficacy of the drug. Conclusion: These results demonstrate the superiority of in situ gel NE to conventional ocular eye drops and in situ gels to enhance ocular drug bioavailability.  相似文献   

13.
The purpose of this study was to evaluate the potential of a pectin formulation with in situ gelling properties for the oral sustained delivery of paracetamol (acetaminophen). The formulations consisted of dilute aqueous solutions (1% to 2% w/v) of low methoxy pectin containing calcium ions in complexed form, which on release in the acidic environment of the stomach caused gelation of the pectin. In vitro studies demonstrated diffusion‐controlled release of paracetamol from the gels over a period of 6 h. A bioavailability of approximately 96% of that of a paracetamol solution could be achieved from gels containing an identical dose of drug formed in situ in the stomachs of rats, with appreciably lower peak plasma levels and a sustained release of drug over a period of at least 6 h.  相似文献   

14.
The purpose of this study was to evaluate the potential of a pectin formulation with in situ gelling properties for the oral sustained delivery of paracetamol (acetaminophen). The formulations consisted of dilute aqueous solutions (1% to 2% w/v) of low methoxy pectin containing calcium ions in complexed form, which on release in the acidic environment of the stomach caused gelation of the pectin. In vitro studies demonstrated diffusion-controlled release of paracetamol from the gels over a period of 6 h. A bioavailability of approximately 96% of that of a paracetamol solution could be achieved from gels containing an identical dose of drug formed in situ in the stomachs of rats, with appreciably lower peak plasma levels and a sustained release of drug over a period of at least 6 h.  相似文献   

15.
The system was designed to use Poloxamer as a vehicle for ophthalmic drug delivery using in situ gel formation property. To enhance the wound healing and cell adhesion as well as transparency of Poloxamer hydrogel, chondroitin 6-sulfate (C6S) was introduced into Poloxamer. For this purpose, mono amine-terminated Poloxamer (MATP), which was end-capped with ethylene amine group only in one side of terminal hydroxyl groups of Poloxamer, was synthesized. Subsequently, C6S-graft-Poloxamer copolymer (C6S-g-Poloxamer) was prepared by reaction between the amine groups of MATP and carboxyl groups of C6S in the presence of 1-ethyl-3-(3-dimethylaminopropyl)-carboimide (EDC). The coupling of MATP with C6S was clarified by 1H-NMR and FT-IR spectroscopy. The gelation temperature of graft copolymers was determined by measuring the temperature at which immobility of the meniscus in each solution was first noted. Release behavior of ciprofloxacin from C6S-g-Poloxamer hydrogel in vitro was investigated as a function of C6S content in the graft copolymer by a spectrophotometric assay at 287 nm using an UV spectrophotometer. Differences in the adhesion and morphology of human lens cell between Poloxamer- and C6S-g-Poloxamer-coated surfaces were also investigated. The gelation temperatures of C6S-g-Poloxamer copolymers were lowered with increasing of the concentration of the copolymer and decreasing of C6S content. The release of ciprofloxacin from the graft copolymer was sustained compared with Poloxamer itself and decreased with increasing the content of C6S in the copolymer due to the in situ gel formation of the copolymer and viscous properties of C6S. Human lens cells (B3) adhered to C6S-g-Poloxamer-coated surface were observed as transformed shapes after 2 days. The bioadhesive and thermally gelling of these graft copolymers will be expected to be an excellent drug carrier for the prolonged delivery to surface of the eye.  相似文献   

16.
The aim of this study was the synthesis of a new thiolated chitosan conjugate and the evaluation of its viscoelastic properties in vitro. The modification of chitosan was achieved by covalent attachment of isopropyl-S-acetylthioacetimidate to chitosan. The resulting conjugate (chitosan-TEA; chitosan-thioethylamidine) exhibited 300.7+/-27.4 micromol thiol groups per gram polymer and no disulfide bond. For rheological studies, the pH of 0.5% and 1% polymer solutions was adjusted to 6.5 in order to simulate a physiological pH-level. Both, 0.5% and 1% chitosan-TEA solutions showed the transition from sol to gel within 30 min. Within 6 h of incubation, the storage modulus of 0.5% and 1% chitosan-TEA increased 3354-fold and 6199-fold, whereas the loss modulus increased 11-fold and 38-fold, respectively. Frequency sweep measurements demonstrated an increase in crosslinking of the thiolated polymer as a function of time. The formation of inter- and/or intramolecular disulfide bonds was monitored indirectly via determining the decrease of thiol groups. Unmodified chitosan did not exhibit in situ gelling properties. The release of a fluorescent marker being incorporated in a 0.5% chitosan-TEA solution was significantly (p<0.001) slower, when the formulation was preincubated for one hour and consequently already highly crosslinked. The polymer generated within this study represents a promising novel tool for various drug delivery systems, where in situ gelling properties are advantageous.  相似文献   

17.
Background: Oral-sustained release gel formulations with suitable rheological properties have been proposed as a means of improving the compliance of dysphagic and geriatric patients who have difficulties with handling and swallowing oral dosage forms. Aim: We have modified the rheological and release properties of thermally reversible methylcellulose solutions by admixture with pectin, the gelation of which is ion-responsive, with the aim of formulating an in situ gelling vehicle suitable for oral-sustained drug delivery. Method: Gels formed by solutions containing methylcellulose (1.0–2.0%) and pectin (0.5–2.0%) were assessed for suitable gel strength, and in vitro and in vivo release of paracetamol. Results: Addition of 1.5% pectin to a 2.0% methylcellulose formulation containing 20% d-sorbitol and calcium ions in complexed form increased the gel strength and provided a formulation with a suitable viscosity for ease of swallowing by dysphagic patients. Gels formed in situ after oral administration of this formulation retained their integrity in the rat stomach for sufficient time for sustained release to be achieved. In vitro release of paracetamol from methylcellulose, pectin, and methylcellulose/pectin gels was diffusion-controlled. Plasma levels of paracetamol after oral administration to rats (gastric pH 2.6 and 5.5) of a solution including 2.0% methylcellulose/1.5% pectin showed improved sustained release compared with that from both 2.0% methylcellulose and 1.5% pectin solutions. Conclusions: The addition of suitable concentrations of pectin to methylcellulose solutions produces in situ gelling formulations with suitable viscosity for administration to dysphagic patients and improved sustained release characteristics.  相似文献   

18.
The system was designed to use Poloxamer as a vehicle for ophthalmic drug delivery using in situ gel formation property. To enhance the wound healing and cell adhesion as well as transparency of Poloxamer hydrogel, chondroitin 6-sulfate (C6S) was introduced into Poloxamer. For this purpose, mono amine-terminated Poloxamer (MATP), which was end-capped with ethylene amine group only in one side of terminal hydroxyl groups of Poloxamer, was synthesized. Subsequently, C6S-graft-Poloxamer copolymer (C6S-g-Poloxamer) was prepared by reaction between the amine groups of MATP and carboxyl groups of C6S in the presence of 1-ethyl-3-(3-dimethylaminopropyl)-carboimide (EDC). The coupling of MATP with C6S was clarified by 1H-NMR and FT-IR spectroscopy. The gelation temperature of graft copolymers was determined by measuring the temperature at which immobility of the meniscus in each solution was first noted. Release behavior of ciprofloxacin from C6S-g-Poloxamer hydrogel in vitro was investigated as a function of C6S content in the graft copolymer by a spectrophotometric assay at 287 nm using an UV spectrophotometer. Differences in the adhesion and morphology of human lens cell between Poloxamer- and C6S-g-Poloxamer-coated surfaces were also investigated. The gelation temperatures of C6S-g-Poloxamer copolymers were lowered with increasing of the concentration of the copolymer and decreasing of C6S content. The release of ciprofloxacin from the graft copolymer was sustained compared with Poloxamer itself and decreased with increasing the content of C6S in the copolymer due to the in situ gel formation of the copolymer and viscous properties of C6S. Human lens cells (B3) adhered to C6S-g-Poloxamer-coated surface were observed as transformed shapes after 2 days. The bioadhesive and thermally gelling of these graft copolymers will be expected to be an excellent drug carrier for the prolonged delivery to surface of the eye.  相似文献   

19.
Abstract

Parkinson’s disease is a degenerative disorder of the central nervous system (CNS). The most obvious symptoms are movement-related such as shaking, rigidity, slowness of movement and difficulty with walking, rigid muscular movements and difficulty in chewing and swallowing especially solid dosage forms. Ropinirole is an anti-Parkinson drug that has low oral bioavailability which is primarily due to first-pass metabolism. The objective of proposed work was to increase bioavailability of ropinirole and avoid patient discomfort by formulating thermoreversible in situ nasal gel. Thermoreversible nasal gels were prepared by cold method using Pluronic F-127 and hydroxy methyl propyl cellulose (HPMC K4M) as gelling agents. Formulations were evaluated for various parameters such as drug content, pH, gelling time, gelling temperature, gel strength, mucoadhesive force, ex vivo diffusion, histological studies and in vivo bioavailability. Formulations displayed gelation at nasal temperature and the gelation time was found to be less than mucociliary clearance time. The nasal residence time was seen to be increased due to mucoadhesion and increased gel strength. The nasal gel formulations showed ex vivo drug release between 56–100% in 5?h. Histological study of sheep nasal mucosa revealed that the gel had a protective effect on the mucosa unlike plain ropinirole which showed evidence of moderate cellular damage. A fivefold increase in bioavailability in brain was observed on nasal administration as compared to IV route. Thermoreversible in situ nasal gel was found to a promising drug delivery for Parkinsonian patients.  相似文献   

20.
The aim of this study was the synthesis of a new thiolated chitosan conjugate and the evaluation of its viscoelastic properties in vitro. The modification of chitosan was achieved by covalent attachment of isopropyl-S-acetylthioacetimidate to chitosan. The resulting conjugate (chitosan-TEA; chitosan-thioethylamidine) exhibited 300.7 ± 27.4 µmol thiol groups per gram polymer and no disulfide bond. For rheological studies, the pH of 0.5% and 1% polymer solutions was adjusted to 6.5 in order to simulate a physiological pH-level. Both, 0.5% and 1% chitosan-TEA solutions showed the transition from sol to gel within 30 min. Within 6 h of incubation, the storage modulus of 0.5% and 1% chitosan-TEA increased 3354-fold and 6199-fold, whereas the loss modulus increased 11-fold and 38-fold, respectively. Frequency sweep measurements demonstrated an increase in crosslinking of the thiolated polymer as a function of time. The formation of inter- and/or intramolecular disulfide bonds was monitored indirectly via determining the decrease of thiol groups. Unmodified chitosan did not exhibit in situ gelling properties. The release of a fluorescent marker being incorporated in a 0.5% chitosan-TEA solution was significantly (p < 0.001) slower, when the formulation was preincubated for one hour and consequently already highly crosslinked. The polymer generated within this study represents a promising novel tool for various drug delivery systems, where in situ gelling properties are advantageous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号