首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
以重庆市大足区天青石锶废渣为原料,采用化学共沉淀法制备了锶钡铁氧体(SrxBa1-xFe12O19)。通过XRD、SEM对锶钡铁氧体进行表征,探究沉淀pH值、焙烧温度、焙烧时间对锶钡铁氧体物相组成、微观形貌的影响。实验结果表明,在沉淀pH值为12、焙烧温度900℃、焙烧时间2 h的条件下,制备出的锶钡铁氧体无杂相且呈明显的六角或近六角片状形貌,饱和磁化强度(Ms)60.29 Am2/kg,剩余磁化强度(Ms)32.16 Am2/kg,矫顽力(Hc)30.08 kA/m,具有永磁体高饱和磁化强度(Ms)和高矫顽力(Hc)的特性。  相似文献   

2.
优越磁性能的SrFe12O19微管的模板法制备   总被引:2,自引:0,他引:2  
脱脂棉作模板, 采用溶胶-凝胶法制备并在不同温度下煅烧后制得了SrFe12O19微管, 并用原溶胶-凝胶法制得了六角型纳米SrFe12O19. 利用X射线衍射技术(XRD)﹑扫描电子显微镜(SEM)﹑透射显微镜(TEM)对样品的物相﹑形貌和粒径进行表征, 并利用振动样品磁强计(VSM)对样品进行磁性能研究. 结果表明:借助脱脂棉模板, 采用溶胶凝胶法制备了外径在8~13μm之间, 壁厚在1~2μm之间的SrFe12O19微管, 与原溶胶凝胶法制备的六角型SrFe12O19相比, SrFe12O19微管的矫顽力提高了30%左右, 比饱和磁化强度和剩余磁化强度提高了20%左右, 最终制得了矫顽力、比饱和磁化强度和剩余磁化强度分别为47.2kA/m、70.1A·m2/kg和42.4A·m2/kg的纯六方磁铅石型SrFe12O19微管, 并对微管的形成以及磁性能提高的原因做了解释.  相似文献   

3.
Some aspects of the alternating and rotational hysteresis losses of very diluted samples of γ-Fe2O3particles are examined. The packing fractionpof the particles ranges from 0.001 to 0.120. The coercive force is found to be independent ofp. The alternating and rotational hysteresis losses appear dependent uponpforp < 0.04; the rotational losses increase considerably aspapproaches zero. The values of the rotational hysteresis integral are close to the theoretical ones corresponding to the model of magnetization reversal of chain of spheres with fanning, but they increase slightly with decreasingpforp < 0.04. Generally, the ratio of rotational to alternating losses is about twice that for bulk materials. All these effects are ascribed to a weakening of the magnetic interactions among particles.  相似文献   

4.
Barium ferrite (BaFe2O4) nanoparticles were synthesized by auto combustion method under different weight percentages of barium. The role of barium in the behavior of spinel ferrite property is identified from this study. XRD exhibits prominent orientation of (212) for BaFe2O4 has confirmed especially in 20 and 30 wt% of barium. The addition of barium metal induced the specific vibration in FTIR spectra and such changes coincide well with the particle size. Further, the EDX spectrum reflects the atomic percentage of elemental presence in the samples of barium ferrite. Addition of barium on ferrite nanoparticles reduces the intensity of fluorescence. The morphological changes occurred due to increasing doping concentration of barium and is visualized from the FESEM and TEM images. The formation of different morphologies such as spherical, hexagonal platelets and small rectangular bar shape are observed only due to inclusion of barium at surfactant medium. The magnetic properties of the barium ferrite samples are studied by VSM. It reveals that 35.11 emu/g saturation magnetization (M s ) with 3775.08 Oe coercivity. The change in values of coercivity (H c ) from 3775.08 to 1572.95 Oe due to the variation of barium levels confirmed that the role of barium induced the hard magnetic behavior. The dielectric study also indicates the significance of barium ferrite in the variation of dielectric constant.  相似文献   

5.
M-type barium ferrite material has been widely applied in microwave gyromagnetic devices, but its high sintering temperature restrains its application in chip microwave gyromagnetic devices. In our experiment, single phase barium ferrite has been fabricated at low temperature by microwave sintered (MS) method, the sintering time and temperature were significantly reduced from 22 h and 100 °C for the conventional sintering (CS) process to 2 h and 840 °C for MS process, respectively. Experiments show that MS treated barium ferrite materials possess excellent properties with a saturation magnetization of 53.6 emu/g and coercive force 623.8 Oe. In the frequency range of 1 MHz–1.8 GHz, the real and imaginary part of permeability is between 1.8–3.0 and 0–0.55, and the real and imaginary part of dielectric constant is between 2.4–2.7 and 0–0.15; respectively. Our results indicate that the microwave sintering method is a potential important technique in LTCC technology.  相似文献   

6.
The effect of interactions on the saturation remanence of assemblies of identical, uniaxially anisotropic, single-domain particles is calculated using a spatial-mean interaction field. The particle easy-axis directions are assumed known and given by a distribution function. The remanence is determined by finding the magnetization orientation functional of the particle easy-axis orientation which minimizes the total assembly energy. Curves of remanence versus interaction strength (assembly packing fraction) are shown for a) randomly oriented assemblies of spherical particles with uniaxial crystalline anisotropy only, b) randomly oriented assemblies of acicular particles with shape anisotropy, and c) oriented assemblies of acicular particles with 6:1 aspect ratio. Disregarding external sample-shape demagnetization effects, this model always yields increased remanences due to interactions. A criterion is given which predicts when external shape effects are capable of dominating the net interaction field to yield a reduction in remanence. The applicability of these results and extensions of the theory are discussed in relation to particle assemblies in magnetic tape and high coercivity CoNiP films.  相似文献   

7.
After describing briefly the principles of magnetic recording and the manufacture of media, the author reviews the history, characteristics, and development trends of the most important particulate magnetic recording materials. These are acicular iron oxides, chromium dioxide, cobalt-modified iron oxides, acicular metal particles, and barium ferrite. A trend common to most of the materials is particle size reduction  相似文献   

8.
Various magnetic properties of samples of single-domain particles dispersed in a nonmagnetic matrix are examined as functions of the packing fractionp. The range of variability ofpis from 0.0003 to 0.20. The squareness ratio and the rotational and alternating hysteresis integrals change withp, while the coercive field, the initial anhysteretic susceptibility, and the areas between the remanence curves are not dependent onp. These results are interpretated as a consequence of the formation of agglomerates interacting with each other, rather than as a consequence of analogous interactions among the single-domain particles which are in the aggregate.  相似文献   

9.
In this paper, fine M-type barium hexaferrite (M-Ba-ferrite) particles were synthesized from sugar and nitrates by simple route, which revealed the feasibility of using sugar as chelating agent in forming solid precursors of BaFe12O19. The effects of factors, such as the molar ratio of Fe/Ba, calcination temperature and time, on the morphology, the phase component and the magnetic properties of M-type barium hexaferrite particles were studied by means of X-ray diffraction, infrared spectroscopy, transmission electron microscopy and physical property measurement system. The results showed that the molar ratio of Ba2+ to Fe3+ influenced significantly on the formation of the single phase barium ferrite. The hexagonal platelet barium ferrite particles with a specific saturation magnetization of 64.48 emu/g, remanence magnetization (Mr) of 33.84 emu/g, and coercive force (Hc) of 1848.85 Oe were obtained when the molar ratio of Fe/Ba was 11.5 and the calcination temperature was 1100 °C for 2 h.  相似文献   

10.
Crystal growth and magnetic behavior of iron oxide nanoparticles assembled with biomolecules have been investigated. The nanoparticles assembled with trypsin molecules exhibit superparamagnetism at room temperature with blocking temperature ($sim$80 K) significantly lower than those without trypsin ($sim$140 K). This is attributed to reduced magnetostatic couplings between particles due to increased distance between particles separated by trypsin molecules. Moreover, the synthesized nanoparticle–biomolecule assemblies consist of a unique one-dimensional self-assembled arrays of nanoparticles found by structural analysis using transmission electron microscopy. The moirÉ fringes observed from the particle arrays indicate that the particles are aligned with slight misorientation of their crystallographic axes. Such an unusual formation of nanoparticle arrays may be relevant to specific ligand sites in trypsin molecules and the magnetostatic interparticle couplings.  相似文献   

11.
The increase in the magnetocrystalline anisotropy of chromium dioxide by substitution of Cr (IV) with Rh (IV) or Ir (IV) has led the authors to study the Cr1-xRhxO2and Cr1-xIrxO2solid solutions. The use of H3BO3as buffer agent or iron oxalate in the crystal growth process reduces the particle size and greatly improves the coercive field of Cr1-xIrxO2even at low Ir concentrations (x simeq 5.10^{-4}).  相似文献   

12.
为探讨燃烧合成法制备Ni0.4Zn0.6Fe2O4粉末工业化放大合成的可行性,研究不同反应物量对燃烧合成制备的Ni0.4Zn0.6Fe2O4粉体及烧结后产物的物相、微观形貌及磁性能的影响,对终产物进行XRD、SEM和EDS分析,对样品经行磁性能测试.结果表明:Fe-Fe2O3-Zn O-Ni O体系燃烧合成过程是以扩散-溶解-析出机制进行的,燃烧反应在非平衡条件下进行,燃烧产物的主要物相为Ni-Zn铁氧体,其中存在Zn O及一些铁的氧化物的杂质,产物经热处理后物相全部转变为尖晶石结构;随着反应物量的增加,产物颗粒尺寸增大,均匀度增加,反应物量的增加对产物的磁性能影响不大;随着反应物量的增加,饱和磁化强度逐渐增加,矫顽力基本不变,反应物量为1 500 g时制备的产品磁性能最佳,具有较高的饱和磁化强度Ms=63.72 emu/g和较低的矫顽力Hc=15.61 Oe.  相似文献   

13.
《Composites Part B》2004,35(3):235-243
Magnetic investigations on a nanocomposite material obtained by spinning solutions of styrene–butadiene–styrene block copolymer containing barium ferrite nanoparticles onto Si wafers are reported. The effect of the spinning frequency on the magnetic features is discussed. It is observed that the magnetization at saturation is decreased as the spinning frequency is increased as the centrifuge force removes the magnetic nanoparticles from the solution. This is supported by the derivative of the hysteresis loops, which show two components, one with a high coercive field and another with a small coercive field. Increasing the spinning frequency increases the weight of the low coercive field component. The anisotropy in the distribution of magnetic nanoparticles, triggered eventually by the self-assembly capabilities of the matrix, is revealed by the difference between the coercive field in parallel and perpendicular configuration. It is noticed that increasing the spinning frequency enhances this difference. The effect of annealing the nanocomposite films is discussed.  相似文献   

14.
Particle dispersion and particle orientation in magnetic tapes are experimentally interpreted by using a large-scale model which consists of commercial carbon steel wires and a vinyl chloride binder. Results suggest that the particle orientation in the plane through the thickness of the coating was broader than that in the plane of coating. Even though the micromagnetic equations are not properly scaled, comparison of the large-scale model and γ-Fe2O3assemblies shows general agreement with respect to packing fraction. The coercive force of an isolated single γ-Fe2O3particle is found to be 420-440 Oe, compared to 380 Oe found for packing fractions used in commercial magnetic tapes.  相似文献   

15.
A new composite with cobalt ferrite magnetic nanoparticle dispersed in an aluminum matrix has been prepared using the ball-milling technique followed by compaction and sintering. Our efforts were largely focused on investigating the contribution of cobalt ferrite to the enhancement of structural, mechanical and magnetic properties of aluminum. Incorporation of 1–10 weight (wt)% of nanosized cobalt ferrite into the aluminum matrix could affect remarkable change in mechanical properties. Enhancement of hardness value, elastic modulus, and compressive strength was observed in the case of cobalt ferrite-incorporated aluminum matrix as compared to the pure aluminum sample. Incorporation of cobalt ferrite could impart considerable improvement of magnetization value of the aluminum matrix with a saturation magnetization of 17.07 emu/g for the aluminum sample reinforced with 10 wt% of cobalt ferrite. A decrease in coercive force in the sample arising from the increase in surface effects and inter-particle interaction between the ferromagnetic cobalt ferrite and soft phases in the matrix was also observed.  相似文献   

16.
A dynamic, micromagnetic recording process simulation is used to predict signal and noise for barium ferrite media. The model has a high spatial (particulate level) and temporal (≈10-9 s) resolution. The theory includes head saturation, image charge, particle magnetostatic interactions, and particle anisotropy. Most input media and head characteristics are taken from direct measurements, such as electron microscopy or magnetometry, or from the literature. However, several variables, such as head-medium spacing, can only be estimated from the available data; errors in these estimates could affect the predicted numbers by several dBV. Overall, the calculations yield very high accuracy; both signal and bulk erase noise match experiment to within ≈1 dBV. This unusually close agreement for the bulk erase noise is obtained without the benefit of particle-particle interactions. This latter point places barium ferrite in interesting contrast to acicular particle media where interactions are believed to substantially reduce short-wavelength bulk erase noise  相似文献   

17.
The role of c-axis orientation of the crystallites in the sputtered Co-Cr thin films has been investigated aiming for the control of the coercive force of the film. It has been confirmed that the c-axis orientation plays a very important role to control the coercive force, Hcperpand Hcparellel. When the c-axis of the film is well oriented, only Hcperpchanges with the increase of the substrate temperature Ts leaving Hcparellelrather constant. However, both Hcperpand Hcparellelchange together with the increase of Ts when the film is poorly oriented. It has been considered that Ts is only the factor adjustable for controlling Hc of the films, but the results in this study indicate that the c-axis orientation is the another factor to control Hcperpand Hcparellel, separately.  相似文献   

18.
以乙二胺四乙酸柠檬酸+乙二醇为复合络合剂, 冷冻干燥去除溶胶中水分, 提高凝胶中金属离子与氧化剂的分布均匀性, 并利用微波辅助溶胶凝胶自燃烧一步合成了六角铁酸钡纳米晶. 所得纳米晶近于球形, 尺寸在50~100nm, 其饱和磁化强度为338.5kA/m, 矫顽场仅为20.7kA/m. 分析表明, 富氧条件有利于避免自燃烧过程中由于有机物还原引起的铁元素分布不均匀, 从而有利于铁酸钡的相形成.  相似文献   

19.
研究钡铁氧体永磁材料制备过程中,球磨时间和分级球磨等球磨工艺对浆料粒度的影响,以及浆料粒度对钡铁氧体磁性能的影响。结果表明:在高能球磨过程中,浆料粒径随球磨时间增加呈减小趋势,当球磨时间超过其极限值后基本保持不变。采用分级球磨后浆料粒径明显减小,且颗粒粒径分布均匀,但只有采用合适的球磨工艺才能达到最好的分散效果。钡铁氧体永磁材料的取向度、剩余磁化强度随颗粒粒径的减小呈增大趋势。  相似文献   

20.
A simulation algorithm was developed for modeling the dense packing of large assemblies of particulate materials (in the order of millions). These assemblies represent the real aggregate systems of portland cement concrete. Two variations of the algorithm are proposed: sequential packing model and particle suspension model. A developed multicell packing procedure as well as fine adjustment of the algorithm's parameters were useful to optimize the computational resources (i.e., to realize the trade-off between the memory and packing time). Some options to speed up the algorithm and to pack very large volumes of spherical entities (up to 10 million) are discussed. The described procedure resulted in a quick method for packing of large assemblies of particulate materials. The influence of model variables on the degree of packing and the corresponding distribution of particles was analyzed. Based on the simulation results, different particle size distributions of particulate materials are correlated to their packing degree. The developed algorithm generates and visualizes dense packings corresponding to concrete aggregates. These packings show a good agreement with the standard requirements and available research data. The results of the research can be applied to the optimal proportioning of concrete mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号