首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
研究了三维五向编织/环氧树脂复合材料和树脂基层合复合材料在室温、80℃、150℃和180℃的拉伸性能,讨论了不同温度对三维五向编织复合材料和层合复合材料拉伸的影响规律。研究结果表明,三维五向编织复合材料在80℃、150℃时的拉伸强度与室温相近,而在180℃时,比室温时的拉伸强度下降了15.37%;层合复合材料在80℃、150℃和180℃时的拉伸强度则比室温分别下降了3.45%、13.3%和34.42%。造成层合复合材料高温拉伸强度下降较大的原因是:在高温时,由于树脂被破坏,使层合复合材料发生了分层。说明相同树脂基体的复合材料,增强体结构对复合材料在高温时的拉伸性能有着重要的影响。  相似文献   

2.
以亚麻落麻纤维、 聚乳酸纤维为原料 , 采用非织造加工方法制作预成型件后 , 采用模压工艺将预成型件制成亚麻落麻纤维/聚乳酸基完全可降解复合材料。分别研究了预成型件制作工艺中梳理次数、 增强纤维体积分数及模压成型工艺中模压温度对复合材料拉伸性能的影响 , 并采用扫描电镜 ( SEM) 研究了复合材料的拉伸断裂形貌和界面结合状况。结果表明 : 纤维体积分数为 391 6 %、 模压温度为 190 ℃时材料具有最好的拉伸性能 ;随着梳理次数的增多 , 其拉伸强度先升高后下降 , 梳理 2次时其力学性能最优。材料的拉伸断口形貌表明 , 聚乳酸基材料为脆性断裂 , 增强纤维与树脂基体之间的界面结合有待进一步改善。   相似文献   

3.
以己内酰胺为单体,经热处理的苎麻纤维(RF)为增强材料,采用真空辅助树脂传递模塑成型工艺(VARTM)成功制备了苎麻纤维增强原位阴离子聚合尼龙6(APA6)复合材料.主要研究了热处理前后苎麻纤维表面官能团、结晶性能、力学性能和微观形貌的变化,并对复合材料的冲击断面、力学性能和热性能进行了考察.研究表明:当热处理温度为280℃时,苎麻纤维表面的羟基数量显著减少,结晶度略有降低,拉伸强度和模量有所下降,但苎麻纤维的形貌未有明显变化.RF/APA6复合材料中苎麻纤维与树脂的界面结合良好,与APA6相比,复合材料的拉伸强度略有提高,拉伸模量和弯曲性能得到明显提升,同时热稳定性显著提高.  相似文献   

4.
刘光志  李伟  费又庆 《材料导报》2018,32(2):213-218
以己内酰胺为单体,经热处理的苎麻纤维(RF)为增强材料,采用真空辅助树脂传递模塑成型工艺(VARTM)成功制备了苎麻纤维增强原位阴离子聚合尼龙6(APA6)复合材料。主要研究了热处理前后苎麻纤维表面官能团、结晶性能、力学性能和微观形貌的变化,并对复合材料的冲击断面、力学性能和热性能进行了考察。研究表明:当热处理温度为280℃时,苎麻纤维表面的羟基数量显著减少,结晶度略有降低,拉伸强度和模量有所下降,但苎麻纤维的形貌未有明显变化。RF/APA6复合材料中苎麻纤维与树脂的界面结合良好,与APA6相比,复合材料的拉伸强度略有提高,拉伸模量和弯曲性能得到明显提升,同时热稳定性显著提高。  相似文献   

5.
甘蔗渣纤维增强聚丙烯复合材料的制备和力学性能   总被引:2,自引:0,他引:2  
利用注射成型制备了甘蔗渣纤维增强聚丙烯复合材料, 分析了纤维质量分数、 注射成型条件以及添加物对复合材料力学性能的影响。结果表明, 随着纤维质量分数的增加, 材料的弯曲模量呈递增趋势。由于甘蔗渣纤维热降解的发生, 材料的力学性能随筒体温度的增加呈下降趋势。在模具温度90℃、 注射间隔时间30s、 不同的筒体温度185℃和165℃的成型条件下, 材料的弯曲性能和冲击强度分别呈现最大值。添加了马来酸酐改性聚丙烯后, 材料的弯曲强度和冲击强度得到了提高。   相似文献   

6.
罗健  石建军  贾彬  莫军  黄辉 《复合材料学报》2020,37(12):3091-3101
针对低温暴露对碳纤维/环氧树脂(CF/EP)复合材料力学性能影响进行研究,对低温0℃、?20℃、?40℃、?60℃暴露100 h、200 h、300 h、400 h、500 h后,对CF/EP的复合材料拉伸力学性能影响展开研究,利用SEM电镜扫描分析损伤机制,根据试验结果提出了一种预测CF/EP复合材料低温暴露后剩余强度的预测公式。试验结果表明,在长时间低温暴露后,CF/EP复合材料拉伸强度随低温暴露时间的增长呈现出先增后降的趋势;低温暴露时间低于300 h时,CF/EP复合材料拉伸强度随温度下降先增后降,暴露时间高于300 h后,拉伸强度随温度下降逐渐降低;CF/EP复合材料拉伸弹性模量随低温暴露时间的增长呈现逐渐上升趋势,温度越低,上升趋势越明显。SEM结果表明,低温暴露后,纤维与环氧树脂黏结程度增强,有利于荷载传递,CF/EP复合材料拉伸强度增大,破坏形貌上表现为纤维上包裹更多树脂;长时低温暴露后,由于纤维与基体收缩系数不同导致微裂纹产生,在受到荷载时裂纹进一步扩散,不利于荷载传递,使拉伸强度下降,破坏形貌上表现为纤维成束凝集,纤维束间距增大。基于初始试验,本文提出了一种基于初始试验的CF/EP复合材料低温暴露后剩余强度预测模型,试验与预测结果吻合较好,由于考虑了同种材料在不同低温和暴露时间耦合作用下的等效作用,可减少相同材料在不同低温与暴露时间下的试验次数,因此具备一定参考价值。   相似文献   

7.
采用紫外接枝和与芳纶纤维混杂的方式改善UHMWPE纤维的缺点,详细研究了接枝单体种类、浓度和纤维混杂等对UHMWPE纤维/环氧树脂复合材料性能的影响。结果表明,以丙酮为溶剂采用一步接枝法在紫外光辐射下将丙烯酸接枝到UHMWPE纤维表面上,可显著提高UHMWPE纤维增强的复合材料的弯曲强度、冲击强度和拉伸强度;随着接枝单体浓度的提高弯曲强度和冲击强度没有明显的变化,而拉伸强度不断提高。同时,将UHMWPE纤维与芳纶纤维混杂可提高其与树脂基体生成的复合材料的耐热性。UHMWPE纤维与芳纶纤维按1∶1的质量比混杂,混杂纤维增强的复合材料在90℃的形变量比UHMWPE纤维增强的复合材料减少66.7%,显著提高了复合材料的耐热性。  相似文献   

8.
为改进酚醛固化环氧树脂复合材料的性能,合成了邻甲苯酚醛树脂(o-CFR)、邻甲酚醛环氧树脂(o-CFER)和氧化石墨烯(GO),制备了o-CFR/o-CFER/GO玻璃钢复合材料,研究了不同含量的氧化石墨烯对复合材料物理力学性能的影响。结果表明,GO加入可以改善材料的力学性能、耐热性能和电绝缘性能。当酚醛与环氧质量比为4∶6,材料中加入1.2%的GO时,起始分解温度(Tid)提高了91℃,复合材料的拉伸强度和冲击强度分别提高了102%和86%;加入2.0%时材料玻璃化转变温度(Tg)可提高19℃。  相似文献   

9.
采用侧甲基双马来酰亚胺(T-BMI)对4,4’-二苯甲烷型双马来酰亚胺(BDM)进行共聚改性制备一种高韧性基体树脂。研究结果表明:T-BMI-BDM改性共聚体系的力学性能得到明显的改善,当T-BMI与BDM的摩尔比为1∶1时,冲击强度和断裂韧性GIC分别达到17.2kJ/m~2和316J/m~2,比改性前分别提高了66.3%和39.8%;共聚体系的拉伸强度和弯曲强度分别达到101.0 MPa和165.0 MPa,比改性前分别提高了12.2%和2.5%;DMA和TG分析结果表明,T-BMI-BDM改性共聚体系的热性能没有明显下降,玻璃化转变温度和5%热失重温度分别达到了267.2℃和403.7℃;通过改性共混体系DSC曲线分析确定其固化工艺条件为160℃×2h+180℃×2h+200℃×2h+230℃×4h,通过改性共混体系黏度-温度和黏度-时间曲线分析确定其流变性能适用于复合材料RTM成型工艺,适宜的注射温度为125~140℃。  相似文献   

10.
微波固化改性环氧树脂/碳纤维复合材料研究   总被引:1,自引:0,他引:1  
为探寻微波固化改性环氧树脂/碳纤维复合材料修复不同基体材料损伤的最佳工艺,采用红外热像仪观察不同微波工艺对其固化后的温度变化情况,并利用电子万能试验机对固化后的试样进行了拉伸强度测试.结果表明:将改性环氧树脂/碳纤维复合材料粘接在玻璃纤维复合材料基体上时,随着微波固化功率和固化时间的增加,固化结束后表面温度明显增加,最高温度达到270℃,而当将其粘接在45钢基体上时,随着微波固化功率的增加,固化结束后表面温度变化不明显,最高温度仅为60℃.利用该复合材料修复不同基体材料的损伤,其静强度恢复率达到90%以上,可以满足野战条件下,装备零部件损伤快速修复的要求.  相似文献   

11.
为验证复合材料的耐久性,对T700碳纤维增强环氧树脂基复合材料经自然老化后的微观形貌、表面元素含量、热性能与力学性能等进行了研究。结果表明: 在光氧老化与热氧老化的共同作用下,T700碳纤维增强EP-A环氧树脂基(T700/EP-A)复合材料表层树脂将发生老化降解,并且随自然老化时间的延长,T700/EP-A复合材料的玻璃化转变温度逐渐降低,未老化试样的玻璃化转变温度为207℃,经过自然老化处理3年后,其玻璃化转变温度降低为180℃,延长自然老化时间至5年时,其玻璃化转变温度进一步降低至172℃。而自然老化过程对复合材料力学性能可能同时存在着增强效应与损伤效应,因此造成了T700/EP-A与T700/EP-B复合材料的不同力学性能表现出相异的变化趋势。随自然老化时间延长,T700/EP-A与T700/EP-B复合材料纵向拉伸强度表现出先升高后降低的趋势,纵向弯曲强度表现出逐渐升高的趋势,纵向压缩强度与层间剪切强度存在波动,未呈现出明显变化。   相似文献   

12.
The present work investigates tensile and flexural behavior of untreated New Zealand flax (Phormium tenax) fiber reinforced epoxy composites. Two series of laminates were produced using the same reinforcement content (20 wt%), arranged either as short fibers or quasi-unidirectional ones. Composites reinforced using quasi-unidirectional fibers showed higher modulus and strength both in tensile and flexural loading, when compared to neat epoxy resin. Short fiber composites, although still superior to epoxy resin both for tensile and flexural moduli, proved inferior in strength, especially as concerns tensile strength. These results have been supported by scanning electron microscopy (SEM), which allowed characterizing fiber–matrix interface, and by acoustic emission (AE) analysis, which enabled investigating failure mechanisms. In addition, thermal behavior of both untreated phormium fibers and composites has been studied by thermogravimetric analysis (TGA), revealing the thermal stability of composites to be higher than for phormium fibers and epoxy matrix alone.  相似文献   

13.
Natural fiber reinforced composites have attracted interest due to their numerous advantages such as biodegradability, dermal non-toxicity and with promising mechanical strength. The desire to mitigate climate change due to greenhouse gas emissions, biodegradable resins are explored as the best forms of polymers for composites apart from their synthetic counterparts which are non-renewable. In this study biodegradable bark cloth reinforced green epoxy composites are developed with view of application to automotive instrument panels. The optimum curing temperature of green epoxy was shown to be 120 °C. The static properties showed a tensile strength of 33 MPa and flexural strength of 207 MPa. The dynamic mechanical properties, frequency sweep showed excellent fiber-matrix bonding of the alkali treated fabric with the green epoxy polymer with glass transition temperature in the range of 160 °C–180 °C. Treatment of the fabric with alkali positively influenced the mechanical properties of the fabric reinforced biocomposites.  相似文献   

14.
碳纤维/树脂复合材料广泛应用于民用航空器结构中,在服役期间会受到复杂环境(湿热、腐蚀、复杂应力和电热作用等)的作用,低强度电流对碳纤维/树脂复合材料的影响受到的关注较少。以碳纤维/树脂复合材料为研究对象,根据碳纤维的温敏效应和通电时的电阻变化规律,计算出碳纤维单丝/环氧树脂复合试样的界面温度范围,之后采用拉曼光谱测试和单丝断裂实验研究了低强度电流对单丝复合体系界面应力和界面剪切强度的影响。结果表明:随着电流强度的提高,单丝复合体系的界面温度随之升高,电流为8 mA时,界面温度高达约200℃。随着电流强度的增大,单丝复合体系的界面压缩应力表现为先增大后减小的趋势,电流高于7 mA后,界面处树脂出现烧蚀降解破坏;单丝断裂实验结果表明随着电流强度增大,单丝复合体系的界面剪切强度呈现先升后降的趋势,在6 mA时界面剪切强度达到最大值62.39 MPa,而8 mA时界面剪切强度仅为34.95 MPa。   相似文献   

15.
为提高玻纤增强环氧树脂复合材料的力学性能,采用静电植绒法将多壁碳纳米管(MWCNTs)附着在玻纤织物表面,得到改性的玻纤织物。利用一种低黏度的环氧树脂和所制得的改性织物,采用真空辅助成型工艺(VARI)制备了MWCNTs改性格玻纤织物/环氧树脂复合材料层合板,表征了层合板的力学性能。对进行力学实验后的MWCNTs改性玻纤织物/环氧树脂复合材料试样断口进行了SEM和OPM观察。结果显示:与未添加MWCNTs的玻纤织物/环氧树脂复合材料层合板相比,添加了MWCNTs的层合板的拉伸强度降低了10.24%,弯曲强度降低了13.90%,压缩强度降低了17.33%,拉伸模量和弯曲模量分别提高了19.38%和16.04%,压缩模量提高了13%;MWCNTs与玻纤织物之间的结合较弱,在拉伸作用下,存在明显的脱粘和分层;将改性玻纤织物在200℃下热压处理2h后,制备的MWCNTs改性玻纤织物/环氧树脂复合材料层合板的力学性能均有所提高,热压处理后树脂与玻纤织物之间的界面结合得到改善。  相似文献   

16.
采用不同混杂比的碳纤维-玻璃纤维层内经向混编单轴向织物制备了混杂纤维增强环氧树脂复合材料, 研究了不同混杂结构和不同混杂比的碳纤维-玻璃纤维/环氧树脂复合材料拉伸性能的变化及破坏形式。0°拉伸结果表明:同种混杂织物的不同混杂结构中, 碳纤维相对集中的完全对齐结构强度最高, 不同混杂比织物的完全对齐结构强度相当;碳纤维-玻璃纤维/环氧树脂复合材料的模量遵循混合定律。90°拉伸结果表明:纤维与树脂间的界面结合强度为碳纤维/树脂>玻璃纤维/树脂, 碳纤维-玻璃纤维/环氧树脂复合材料的强度、模量与材料厚度方向上界面的不同形式(单一或交替界面、碳纤维或玻璃纤维的分布位置等)有关, 与碳纤维的含量基本无关。   相似文献   

17.
针对不同编织角度的三维四向编织碳纤维/环氧树脂复合材料,进行了热环境下的轴向拉伸和压缩力学性能实验研究,讨论了温度对三维四向编织复合材料的轴向拉伸和压缩力学性能的影响,并根据宏观断裂形貌和SEM图像分析了材料的破坏和断裂机制。结果表明,随着测试温度的升高,三维四向编织碳纤维/环氧树脂复合材料的纵向拉伸强度有小幅提高,而纵向压缩强度显著降低。在室温条件下,编织角对材料的纵向拉伸破坏特征没有影响,而对材料的纵向压缩破坏特征有较大影响。随着测试温度的升高,不同编织角度复合材料的纵向拉伸和压缩的损伤破坏形态均与室温条件下明显不同。   相似文献   

18.
以端氨基树枝状大分子PAMAM作为环氧树脂固化剂, 通过拉伸试验、 冲击试验、 DSC、 TGA研究了配比和固化温度对PAMAM与环氧树脂E-44的固化物性能的影响。 结果表明, 最佳固化温度为140℃, 但随着固化温度升高, 配比的影响表现出不同的规律: 80℃固化时, 最佳配比为0.47, 此时拉伸强度和冲击强度最佳, 玻璃化转变温度最高, 交联密度最大; 而在80℃以上固化时, 最佳配比逐渐向低配比方向移动, 140℃固化时, 最佳配比为0.28, 此时拉伸强度和冲击强度最佳, 玻璃化转变温度最高, 交联密度最大。固化物的密度和体积收缩率都是配比为0.47时最大, 而热稳定性都是配比为0.28时最佳。利用滴定法测定了固化物的固化度, 结果表明, 随着固化温度的升高, 低配比体系的固化度迅速提高并接近化学计量点配比体系的固化度。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号