首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In bacteria, the regulation of gene expression in response to changes in cell density is called quorum sensing. Quorum-sensing bacteria produce, release, and respond to hormone-like molecules (autoinducers) that accumulate in the external environment as the cell population grows. In the marine bacterium Vibrio harveyi two parallel quorum-sensing systems exist, and each is composed of a sensor-autoinducer pair. V. harveyi reporter strains capable of detecting only autoinducer 1 (AI-1) or autoinducer 2 (AI-2) have been constructed and used to show that many species of bacteria, including Escherichia coli MG1655, E. coli O157:H7, Salmonella typhimurium 14028, and S. typhimurium LT2 produce autoinducers similar or identical to the V. harveyi system 2 autoinducer AI-2. However, the domesticated laboratory strain E. coli DH5alpha does not produce this signal molecule. Here we report the identification and analysis of the gene responsible for AI-2 production in V. harveyi, S. typhimurium, and E. coli. The genes, which we have named luxSV.h., luxSS.t., and luxSE.c. respectively, are highly homologous to one another but not to any other identified gene. E. coli DH5alpha can be complemented to AI-2 production by the introduction of the luxS gene from V. harveyi or E. coli O157:H7. Analysis of the E. coli DH5alpha luxSE.c. gene shows that it contains a frameshift mutation resulting in premature truncation of the LuxSE.c. protein. Our results indicate that the luxS genes define a new family of autoinducer-production genes.  相似文献   

2.
3.
An asd-complementing mini-Tn5 transposon was constructed for random insertion of the Escherichia coli LT enterotoxin genes (elt) into the genome of Deltaasd attenuated strains of Salmonella typhimurium. Transfer of the minitransposon to different S. typhimurium strains resulted in random integration only in strain chi4072, while in strain chi3987, which harbours the virulence plasmid, over 20% of the insertions occurred at the same site. Expression of elt was found to be highest in Salmonella isolates carrying the mini-Tn5 integrated at the preferred site, which was mapped to an uncharacterised region of the virulence plasmid. Sequence analysis of the integration site showed that it lies within an open reading frame with sequence similarity to E. coli leuO and contiguous to a novel fimbrial locus.  相似文献   

4.
5.
We have isolated the lysogenic bacteriophage SfII, which mediates glucosylation of Shigella flexneri O-antigen, resulting in expression of the type II antigen. SfII belongs to group A of the Bradley classification and has a genome size of 42.3kb. DNA sequencing of a 4 kb BamHI subclone identified four open reading frames (ORFs), of which only two were found to be necessary for serotype conversion. These genes were named bgt, which encodes a putative bactoprenol glucosyl transferase, and gtrII, encoding the putative type II antigen determining glucosyl transferase. These genes are adjacent to the integrase gene (int) and attachment site (attP), which are highly homologous to those of Salmonella bacteriophage P22. Another ORF encoded a highly hydrophobic protein of 120 amino acids with homologues in Escherichia coli, Salmonella bacteriophage P22 and S. flexneri. Previous studies identified gtrX, the glucosyl transferase gene, of bacteriophage SfX, which also glucosylates the O-antigen specifically. We determined that gtrX-mediated expression of the group 7,8 antigen also requires bgt. This allowed us to identify gtrII as being the serotype antigen II determining glucosyl transferase. Southern hybridization and polymerase chain reaction (PCR) analyses indicated that bgt homologues exist in the genomes of all S. flexneri serotypes and in E. coli K-12, whereas gtrII was only detected in strains of serotype 2. Transposon TnphoA-derived chromosomal mutations of bgt and gtrII in S. flexneri serotype 2a were isolated and characterized. [35S]-methionine labelling and the use of a T7 RNA polymerase expression system identified a protein of 34kDa corresponding to Bgt. However, GtrII, which has a predicted molecular weight of 55 kDa, was not detected. We propose that the function of Bgt is to transfer the glucose residues from the UDP-glucose onto bactoprenol and GtrII then transfers the glucose onto the O-antigen repeat unit at the rhamnose III position. The chromosomal organization of these serotype-converting genes, when compared with their homologues in E. coli K-12 chromosome and the P22 bacteriophage genome, were very similar. This suggests that the regions encode similar functions in these organisms and have a similar evolutionary origin.  相似文献   

6.
Escherichia coli and Salmonella typhimurium strains grown in Luria-Bertani medium containing glucose secrete a small soluble heat labile organic molecule that is involved in intercellular communication. The factor is not produced when the strains are grown in Luria-Bertani medium in the absence of glucose. Maximal secretion of the substance occurs in midexponential phase, and the extracellular activity is degraded as the glucose is depleted from the medium or by the onset of stationary phase. Destruction of the signaling molecule in stationary phase indicates that, in contrast to other quorum-sensing systems, quorum sensing in E. coli and S. typhimurium is critical for regulating behavior in the prestationary phase of growth. Our results further suggest that the signaling factor produced by E. coli and S. typhimurium is used to communicate both the cell density and the metabolic potential of the environment. Several laboratory and clinical strains of E. coli and S. typhimurium were screened for production of the signaling molecule, and most strains make it under conditions similar to those shown here for E. coli AB1157 and S. typhimurium LT2. However, we also show that E. coli strain DH5alpha does not make the soluble factor, indicating that this highly domesticated strain has lost the gene(s) or biosynthetic machinery necessary to produce the signaling substance. Implications for the involvement of quorum sensing in pathogenesis are discussed.  相似文献   

7.
The fhuA genes of Salmonella paratyphi B, Salmonella typhimurium, and Pantoea agglomerans were sequenced and compared with the known fhuA sequence of Escherichia coli. The highly similar FhuA proteins displayed the largest difference in the predicted gating loop, which in E. coli controls the permeability of the FhuA channel and serves as the principal binding site for the phages T1, T5, and phi80. All the FhuA proteins contained the region in the gating loops required in E. coli for ferrichrome and albomycin transport. The three subdomains required for phage binding were contained in the gating loop of S. paratyphi B which is infected by the E. coli phages, whereas two of the subdomains were deleted in S. typhimurium and P. agglomerans which are resistant to the E. coli phages. Small deletions in a surface loop adjacent to the gating loop, residues 236 to 243 and 236 to 248, inactivated E. coli FhuA with regard to transport of ferrichrome and albomycin, but sensitivity to T1 and T5 was fully retained and sensitivity to phi80 and colicin M was reduced 10-fold. Full-size FhuA hybrid proteins of S. paratyphi B and S. typhimurium displayed S. paratyphi B FhuA activity when the hybrids contained two-thirds of either the N- or the C-terminal portions of S. paratyphi B and displayed S. typhimurium FhuA activity to phage ES18 when the hybrid contained two-thirds of the N-terminal region of the S. typhimurium FhuA. The central segment of the S. paratyphi B FhuA flanked on both sides by S. typhimurium FhuA regions conferred full sensitivity only to phage T5. The data support the essential role of the gating loop for the transport of ferrichrome and albomycin, identified an additional loop for ferrichrome and albomycin uptake, and suggest that several segments and their proper conformation, determined by the entire FhuA protein, contribute to the multiple FhuA activities.  相似文献   

8.
The htrB gene product of Haemophilus influenzae contributes to the toxicity of the lipooligosaccharide. The htrB gene encodes a 2-keto-3-deoxyoctulosonic acid-dependent acyltransferase which is responsible for myristic acid substitutions at the hydroxy moiety of lipid A beta-hydroxymyristic acid. Mass spectroscopic analysis has demonstrated that lipid A from an H. influenzae htrB mutant is predominantly tetraacyl and similar in structure to lipid IV(A), which has been shown to be nontoxic in animal models. We sought to construct a Salmonella typhimurium htrB mutant in order to investigate the contribution of htrB to virulence in a well-defined murine typhoid model of animal pathogenesis. To this end, an r- m+ galE mutS recD strain of S. typhimurium was constructed (MGS-7) and used in inter- and intrastrain transduction experiments with both coliphage P1 and Salmonella phage P22. The Escherichia coli htrB gene containing a mini-Tn10 insertion was transduced from E. coli MLK217 into S. typhimurium MGS-7 via phage P1 and subsequently via phage P22 into the virulent Salmonella strain SL1344. All S. typhimurium transductants showed phenotypes similar to those described for the E. coli htrB mutant. Mass spectrometric analysis of the crude lipid A fraction from the lipopolysaccharide of the S. typhimurium htrB mutant strain showed that for the dominant hexaacyl form, a lauric acid moiety was lost at one position on the lipid A and a palmitic acid moiety was added at another position; for the less abundant heptaacyl species, the lauric acid was replaced with palmitoleic acid.  相似文献   

9.
The cob operon of Salmonella typhimurium includes 20 genes devoted to the synthesis of adenosyl-cobalamin (coenzyme B12). Mutants with lesions in the promoter-distal end of the operon synthesize vitamin B12 only if provided with 5,6-dimethylbenzimidazole (DMB), the lower ligand of vitamin B12. In the hope of identifying a gene(s) involved in synthesis of DMB, the DNA base sequence of the end of the operon has been determined; this completes the sequence of the cob operon. The cobT gene is the last gene in the operon. Four CobII (DMB-) mutations mapping to different deletion intervals of the CobII region were sequenced; all affect the cobT open reading frame. Both the CobT protein of S. typhimurium and its Pseudomonas homolog have been shown in vitro to catalyze the transfer of ribose phosphate from nicotinate mononucleotide to DMB. This reaction does not contribute to DMB synthesis but rather is the first step in joining DMB to the corrin ring compound cobinamide. Thus, the phenotype of Salmonella cobT mutants conflicts with the reported activity of the affected enzyme, while Pseudomonas mutants have the expected phenotype. J. R. Trzebiatowski, G. A. O'Toole, and J. C. Escalante Semerena have suggested (J. Bacteriol. 176:3568-3575, 1994) that S. typhimurium possesses a second phosphoribosyltransferase activity (CobB) that requires a high concentration of DMB for its activity. We support that suggestion and, in addition, provide evidence that the CobT protein catalyzes both the synthesis of DMB and transfer of ribose phosphate. Some cobT mutants appear defective only in DMB synthesis, since they grow on low levels of DMB and retain their CobII phenotype in the presence of a cobB mutation. Other mutants including those with deletions, appear defective in transferase, since they require a high level of DMB (to activate CobB) and, in combination with a cobB mutation, they eliminate the ability to join DMB and cobinamide. Immediately downstream of the cob operon is a gene (called ORF in this study) of unknown function whose mutants have no detected phenotype. Just counterclockwise of ORF is an asparagine tRNA gene (probably asnU). Farther counterclockwise, a serine tRNA gene (serU or supD) is weakly cotransducible with the cobT gene.  相似文献   

10.
11.
12.
As the result of P1-mediated cotransduction with serB from Salmonella potsdam to the Escherichia coli/Salmonella typhimurium hybird 4617, one recombinant, L4004, was isolated which had a restriction-modification (R--M) system different from the SB and SP systems of its parents, and was designated SQ. The genes of SQ were allelic to those of the SB system of S. typhimurium and were shown by complementation experiments to be functionally related to those of the K system of E. coli. Evidence that the SQ system in L4004 arose as the result of a recombination event within the hsdS genes of SB and SP is discussed.  相似文献   

13.
14.
The type 1 pilin encoded by fim is present in both Escherichia coli and Salmonella natural isolates, but several lines of evidence indicate that similarities at the fim locus may be an example of independent acquisition rather than common ancestry. For example, the fim gene cluster is found at different chromosomal locations and with distinct gene orders in these closely related species. In this work we examined the fim gene cluster of Salmonella, the genes of which show high nucleotide sequence divergence from their E. coli counterparts, as well as a different G+C content and codon usage. DNA hybridization analysis revealed that, among the salmonellae, the fim gene cluster is present in all isolates of S. enterica but is absent from S. bongori. Molecular phylogenetic analyses of the fimA and fimI genes yield an estimate of phylogeny that is in satisfactory congruence with housekeeping and other virulence genes examined in this species. In contrast, phylogenetic analyses of the fimZ, fimY, and fimW genes indicate that horizontal transfer of this region has occurred more than once. There is also size variation in the fimZ, fimY, and fimW intergenic regions in the 3' region, and these genes are absent in isolate S2983 of subspecies IIIa. Interestingly, the G+C contents of the fimZ, fimY, and fimW genes are less than 46%, which is considerably lower than those of the other six genes of the fim cluster. This study demonstrates that horizontal transmission of all or part of the same gene cluster can occur repeatedly, with the result that different regions of a single gene cluster may have different evolutionary histories.  相似文献   

15.
Coliphage BF23 develops in Salmonella typhimurium rough strains. The phage is neither restricted nor modified by S. typhimurium. The growth patterns of the phage were slightly different in S. typhimurium than in Escherichia coli, although phage propagated on S. typhimurium is identical to the phage propagated in E. coli by several criteria used. Mutants of S. typhimurium resistant to BF23 were isolated and found to map (by P22- and Pl-mediated transduction) in the same position as bfe mutants of E. coli. The order of genes was: metB - argC - bfe - rif - purD - metA. Phage BF23 does not form plaques on smooth S. typhimurium strains, since the phage fails to adsorb irreversibly to smooth cells. Nevertheless, on solid agar, the phage prevents growth of many (but not all) smooth strains. Moreover, UV- and alkali-inactivated phage BF23, although unable to form plaques on sensitive hosts, retains the ability to prevent growth of the host on solid medium. This ability is sensitive to protease and resistant to DNAse and RNase. Heat treatment of the phage causes rapid loss of the cell-growth-preventing-ability whereas the ability to form plaques is lost much more slowly. These results lead to a proposal that phage BF23 virions carry a colicin-like factor that kills sensitive cells.  相似文献   

16.
A DNA fragment containing the recA gene of Gluconobacter oxydans was isolated and further characterized for its nucleotide sequence and ability to functionally complement various recA mutations. When expressed in an Escherichia coli recA host, the G. oxydans recA protein could efficiently function in homologous recombination and DNA damage repair. The recA gene's nucleotide sequence analysis revealed a protein of 344 amino acids with a molecular mass of 38 kDa. We observed an E. coli-like LexA repressor-binding site in the G. oxydans recA gene promoter region, suggesting that a LexA-like mediated response system may exist in G. oxydans. The expression of G. oxydans recA in E. coli RR1, a recA+ strain, surprisingly caused a remarkable reduction of the host wild-type recA gene function, whereas the expression of both Serratia marcescens recA and Pseudomonas aeruginosa recA gene caused only a slight inhibitory effect on function of the host wild-type recA gene product. Compared with the E. coli RecA protein, the identity of the amino acid sequence of G. oxydans RecA protein is much lower than those RecA proteins of both S. marcescens and Pseudomonas aeruginosa. This result suggests that the expression of another wild-type RecA could interfere with host wild-type recA gene's function, and the extent of such an interference is possibly correlated to the identity of the amino acid sequence between the two classes of RecA protein.  相似文献   

17.
I have subcloned and sequenced the genes cmtB and cmtA of Escherichia coli K-12 which lie adjacent to the tkt gene on the chromosome. The genes cmtB and cmtA could encode a cytoplasmic protein (EIIA) and an integral-membrane protein (EIIBC), respectively, of the bacterial phospho enol pyruvate-dependent carbohydrate phosphotransferase system. High similarity to the Enzymes IIMtl of Escherichia coli K-12 (gene mtlA) and of Staphylococcus carnosus was detected, but the two genes did not complement mannitol-negative E. coli mutants without the use of a heterologous promoter.  相似文献   

18.
A chromosomal region present in Salmonella typhimurium but absent from related species was identified by hybridization. A DNA probe originating from 78 min on the S. typhimurium chromosome hybridized with DNA from Salmonella enteritidis, Salmonella heidelberg, and Salmonella dublin but not with DNA from Salmonella typhi, Salmonella arizonae, Escherichia coli, and Shigella serotypes. Cloning and sequence analysis revealed that the corresponding region of the S. typhimurium chromosome encodes a fimbrial operon. Long fimbriae inserted at the poles of the bacterium were observed by electron microscopy when this fimbrial operon was introduced into a nonpiliated E. coli strain. The genes encoding these fimbriae were therefore termed lpfABCDE, for long polar fimbriae. Genetically, the lpf operon was found to be most closely related to the fim operon of S. typhimurium, both in gene order and in conservation of the deduced amino acid sequences.  相似文献   

19.
20.
Previous investigations of the incompatibility group F, P, and I plasmid systems revealed the important role of the outer membrane components in the conjugal transfer of these plasmids. We have observed variability in transfer frequency of three incompatibility group H plasmids (IncHI1 plasmid R27, IncHI2 plasmid R478, and a Tn7 derivative of R27, pDT2454) upon transfer into various Salmonella typhimurium lipopolysaccharide (LPS) mutants derived from a common parental strain, SL1027. Recipients with truncated outer core via the rfaF LPS mutation increased the transfer frequency of the IncH plasmids by up to a factor of 10(3). Mutations which resulted in the truncation of the residues following 3-deoxy-D-manno-octulosonic acid, such as the rfaE and rfaD mutations, decreased the transfer frequency to undetectable levels. Addition of phosphorylethanolamine, a component of wild-type LPS, to the media decreased the frequency of transfer of R27 into wild-type and rfaF LPS mutant recipients tested. Reversing the direction of transfer, by mating LPS mutant donors with wild-type recipients, did not affect the frequency of transfer compared to the standard matings of wild-type donor with LPS mutant recipient. These findings demonstrate that conjugation interactions affected by LPS mutation are not specific for the recipient cell. Our results suggest that LPS mutation does not affect conjugation via altered pilus binding but affects some later steps in the conjugative process, and alteration of transfer frequency by O-phosphorylethanolamine and LPS truncation is due to charge-related interactions between the donor and recipient cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号