首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increased pulmonary vascular resistance (PVR) and mismatch in ventilation-to-perfusion ratio characterize acute lung injury (ALI). Pulmonary arterial pressure (Ppa) decreases when nitric oxide (NO) is inhaled during hypoxic pulmonary vasoconstriction (HPV); thus NO inhalation may reduce PVR and improve gas exchange in ALI. We studied the hemodynamic and gas exchange effects of NO inhalation during HPV and then ALI in eight anesthetized open-chest mechanically ventilated dogs. Right atrial pressure, Ppa, and left ventricular and arterial pressures were measured, and cardiac output was estimated by an aortic flow probe. Shunt and dead space were also estimated. The effect of 5-min exposures to 0, 17, 28, 47, and 0 ppm inhaled NO was recorded during hyperoxia, hypoxia, and oleic acid-induced ALI. During ALI, partial beta-adrenergic blockade (propranolol, 0.15 mg/kg i.v.) was induced and 74 ppm NO was inhaled. Nitrosylhemoglobin (NO-Hb) and methemoglobin (MetHb) levels were measured. During hyperoxia, NO inhalation had no measurable effects. Hypoxia increased Ppa (from 19.8 +/- 6.1 to 28.3 +/- 8.7 mmHg, P < 0.01) and calculated PVR (from 437 +/- 139 to 720 +/- 264 dyn.s.cm-5, P < 0.01), both of which decreased with 17 ppm NO. ALI decreased arterial PO2 and increased airway pressure, shunt, and dead space ventilation. Ppa (19.8 +/- 6.1 vs. 23.4 +/- 7.7 mmHg) and PVR (437 +/- 139 vs. 695 +/- 359 dyn.s.cm-5, P < 0.05) were greater during ALI than during hyperoxia. No inhalation had no measureable effect during ALI before or after beta-adrenergic blockade. MetHb remained low, and NO-Hb was unmeasurable. Bolus infusion of nitroglycerin (15 micrograms) induced an immediate decrease in Ppa and PVR during ALI.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The double free-muscle transfer technique has restored prehension in patients following complete avulsion of the brachial plexus. This achievement was almost inconceivable as recently as several years ago and has now given new hope for these patients to be able to use their otherwise useless limbs.  相似文献   

3.
BACKGROUND: Inhaled nitric oxide (NO) improves arterial oxygenation in patients with acute lung injury (ALI) by selectively dilating pulmonary vessels perfusing ventilated lung areas. It can be hypothesized that NO uptake from the lung decreases with increasing ventilation perfusion mismatch. This study was undertaken to determine the factors influencing the fluctuation of tracheal NO concentration over the respiratory cycle as an index of NO pulmonary uptake in patients with ALI. METHODS: By using a prototype system (Opti-NO) delivering a constant flow of NO only during the inspiratory phase, 3 and 6 ppm of NO were administered during controlled mechanical ventilation into a lung model and to 11 patients with ALI. All patients had a thoracic computed tomography (CT) scan. Based on an analysis of tomographic densities, lungs were divided into three zones: normally aerated (-1.000 to -500 Hounsfield units [HU]), poorly aerated (-500 to -100 HU), and nonaerated (-100 to +100 HU), and the volume of each zone was computed. Concentrations of NO in the inspiratory limb and trachea were continuously measured by a fast-response chemiluminescence apparatus. RESULTS: In the lung model, tracheal NO concentration was stable with minor fluctuation. In contrast, in patients, tracheal NO concentration fluctuated widely during the respiratory cycle (55 +/- 10%). Because uptake of NO from the lungs was absent in the lung model but present in the patients, this fluctuation was considered as an index of pulmonary uptake of NO. This was further substantiated by (1) the coincidence of the peak and minimum tracheal NO concentration with the end-inspiratory and end-expiratory phases, respectively, and (2) continued decrease of tracheal NO concentration during prolonged expiratory phase. In patients with ALI, the fluctuation of tracheal NO concentration expressed as the difference between inspiratory and expiratory NO concentrations divided by inspiratory NO concentration was greater at 6 ppm than at 3 ppm (P < 0.01), was linearly correlated with normally aerated lung volume, inversely correlated with alveolar dead space and with poorly aerated lung volume. CONCLUSION: In patients with ALI, fluctuation of tracheal NO concentration over the respiratory cycle can be considered as an index of NO uptake from the lungs that depends on aerated lung volume and perfusion of ventilated lung areas. At bedside, it may be used to follow the evolution of ventilation-perfusion mismatch.  相似文献   

4.
5.
BACKGROUND: We previously reported that inhaled nitric oxide (NO) improved pulmonary function following smoke inhalation. This study evaluates the physiologic mechanism by which inhaled NO improves pulmonary function in an ovine model. METHODS: Forty-eight hours following wood smoke exposure to produce a moderate inhalation injury, 12 animals were anesthetized and mechanically ventilated (FIO2, 0.40; tidal volume, 15 mL/kg; PEEP, 5 cm H2O) for 3 hours. For the first and third hours, each animal was ventilated without NO: for the second hour, all animals were ventilated with 40 ppm NO. Cardiopulmonary variables and blood gases were measured every 30 minutes. The multiple inert gas elimination technique (MIGET) was performed during the latter 30 minutes of each hour. The data were analyzed by ANOVA. RESULTS: Pulmonary arterial hypertension and hypoxemia following smoke inhalation were significantly attenuated by inhaled NO compared with the values without NO (p < 0.05, ANOVA). Smoke inhalation resulted in a significant increase in blood flow distribution to low VA/Q areas (VA/Q < 0.10) with increased VA/Q dispersion. These changes were only partially attenuated by the use of inhaled NO. The SF6 (sulfur hexafluoride) retention ratio was also decreased by inhaled NO. Peak inspiratory pressures and pulmonary resistance values were not affected by inhaled NO. CONCLUSIONS: Inhaled NO moderately improved VA/Q mismatching following smoke inhalation by causing selective pulmonary vasodilation of ventilated areas in the absence of bronchodilation. This modest effect appears to be limited by the severe inflammatory changes that occur as a consequence of smoke exposure.  相似文献   

6.
The role of nitric oxide (NO) in lung injury remains unclear. Both beneficial and detrimental roles have been proposed. In this study, we used mutant mice lacking the inducible nitric oxide synthase (iNOS) to assess the role of this isoform in sepsis-associated lung injury. Wild-type and iNOS knockout mice were injected with either saline or Escherichia coli endotoxin (LPS) 25 mg/kg and killed 6, 12, and 24 h later. Lung injury was evaluated by measuring lactate dehydrogenase activity in the bronchoalveolar lavage, pulmonary wet/dry ratio, and immunostaining for nitrotyrosine formation. In the wild-type mice, LPS injection elicited more than a 3-fold rise in lactate dehydrogenase activity, a significant rise in lung wet/dry ratio and extensive nitrotyrosine staining in large airway and alveolar epithelium, macrophages, and pulmonary vascular cells. This was accompanied by induction of iNOS protein and increased lung nitric oxide synthase activity. By comparison, LPS injection in iNOS knockout mice elicited no iNOS induction and no significant changes in lung NOS activity, lactate dehydrogenase activity, lung wet/dry ratio, or pulmonary nitrotyrosine staining. These results indicate that mice deficient in iNOS gene are more resistant to LPS-induced acute lung injury than are wild-type mice.  相似文献   

7.
8.
BACKGROUND: Gas exchange is improved during partial liquid ventilation (PLV) with perfluorocarbon in animal models of acute lung injury. The mechanisms are not fully defined. We hypothesize that redistribution of pulmonary blood flow (PBF) along with redistribution of, and decrease in, total lung water (TLW) during PLV may improve oxygenation. METHODS: We characterized PBF and TLW in anesthetized adult dogs by using positron emission tomography with H2(15)O. Measurements of gas exchange, PBF, and TLW were made before and after acute lung injury was induced with intravenous oleic acid. The same measurements were made during PLV (with 30 ml/kg perfluorocarbon) and compared with gas ventilated (GV) controls. RESULTS: Oxygenation was significantly improved during PLV. PBF redistributed from the dependent zone of the lung to the nondependent zones, thus potentially improving ventilation/perfusion relationships. However, a similar pattern of PBF redistribution was observed during GV such that there was no significant difference between groups. TLW redistributed in a similar pattern during PLV. By quantitative measurements, PLV ameliorated the continued accumulation of TLW compared with GV animals. CONCLUSIONS: We conclude that PBF and TLW redistribution and attenuation of increases in TLW may contribute to the improvement in gas exchange during PLV in the setting of acute lung injury.  相似文献   

9.
We observed clinical response to inhaled nitric oxide (iNO) in 12 neonates with persistent pulmonary hypertension of the newborn (PPHN). Clinical response was defined as a decrease in oxygenation index (OI) by 40%. Ten of 12 neonates had response to iNO showing decrease OI from 46.1+/-7.6 to 14.4+/-6.8 at 1 hour after inhalation. Sustained improvement of OI was achieved in 8 neonates and two neonates were relapsed. In the group of neonates who had OI above 40 (n=7), 6 of them showed the decrease of OI from 66.1+/-4.8 to 18.3+/-8.0 at 1 hour. In two groups, one had OI of 40 or greater, and the other OI of 40 or less, there were no differences in pattern of response and early death rate. The response rates according to underlying diseases were as follows; idiopathic PPHN 100%, respiratory distress syndrome 100%, and diaphragmatic hernia 66.7%. Relapse was observed in one neonate with sepsis caused by pneumonia and in one infant with meconium aspiration syndrome. Two infants showed no response to iNO (one diaphragmatic hernia and one suspected pulmonary hypoplasia). We conclude that iNO therapy could improve oxygenation in high percentage of newborn infants with severe PPHN of various underlying conditions except pulmonary hypoplasia.  相似文献   

10.
11.
BACKGROUND: Inhaled nitric oxide gas selectively decreases pulmonary artery pressure without affecting systemic arterial pressure. To determine if the selective pulmonary vasodilating effect of inhaled nitric oxide gas is due to inactivation by hemoglobin, we studied the ability of whole blood to inhibit the vasodilator activity of effluent from isolated lungs exposed to inhaled nitric oxide. METHODS AND RESULTS: The effluent from ventilated, Krebs-perfused rabbit lungs was passed directly over 3- to 4-mm rabbit aortic rings. Inhaled nitric oxide (150 ppm for 3 minutes) reduced pulmonary perfusion pressure, elevated by a continuous infusion of U46619, by 35 +/- 7% (mean +/- SEM, n = 5). Lung effluent from this series of experiments caused 40 +/- 13% relaxation of phenylephrine-preconstricted aortic rings. When blood was added to the combined lung/ring perfusion cascade (final hemoglobin concentration, 1 g/dL), inhaled nitric oxide again significantly reduced pulmonary perfusion pressure, but the effluent now failed to relax the aortic rings (30 +/- 6% [control] versus 1.5 +/- 1% [blood]). Both reduction in pulmonary perfusion pressure and relaxation of the rings during nitric oxide exposure were unchanged from control values after discontinuing the blood infusion. CONCLUSIONS: The presence of hemoglobin, even in extremely small amounts, restricts the vasodilating effect of inhaled nitric oxide gas to the pulmonary circulation.  相似文献   

12.
Inhaled nitric oxide lowers pulmonary capillary pressure (PCP) in animals and in patients with acute respiratory distress syndrome (ARDS). A dose-response relationship in patients with ARDS has not yet been established. Therefore, we studied the effects of four concentrations of nitric oxide (1, 10, 20 and 40 volumes per million (vpm)) in random order, on PCP in 19 patients with ARDS. PCP was estimated by visual analysis of the pressure decay curve after balloon inflation of the pulmonary artery catheter. Haemodynamic and gas exchange variables were measured at each nitric oxide concentration. Patients were classified as responders when PCP decreased by at least 2 mm Hg after nitric oxide 20 vpm. In responders (n = 8), nitric oxide decreased PCP and post-capillary vascular resistance dose-dependently and changed longitudinal distribution of pulmonary vascular resistance with a maximum effect at 20 vpm. In non-responders (n = 11), PCP did not change. In both groups, the nitric oxide-induced decrease in pre-capillary vascular resistance was small with a maximum effect at 1 vpm. In ARDS, vasodilatation of pre-capillary vessels is achieved at low concentrations of nitric oxide, whereas the effect of nitric oxide on postcapillary vessels is variable. Higher concentrations may be required for optimal post-capillary vasodilatation in a subgroup of ARDS patients.  相似文献   

13.
BACKGROUND: High-altitude pulmonary edema (HAPE) is characterized by pulmonary hypertension, increased pulmonary capillary permeability, and hypoxemia. Treatment is limited to descent to lower altitude and administration of oxygen. METHODS AND RESULTS: We studied the acute effects of inhaled nitric oxide (NO), 50% oxygen, and a mixture of NO plus 50% oxygen on hemodynamics and gas exchange in 14 patients with HAPE. Each gas mixture was given in random order for 30 minutes followed by 30 minutes washout with room air. All patients had severe HAPE as judged by Lake Louise score (6.4+/-0.7), PaO2 (35+/-3. 1 mm Hg), and alveolar to arterial oxygen tension difference (AaDO2) (26+/-3 mm Hg). NO had a selective effect on the pulmonary vasculature and did not alter systemic hemodynamics. Compared with room air, pulmonary vascular resistance fell 36% with NO (P<0.001), 23% with oxygen (P<0.001 versus air, P<0.05 versus NO alone), and 54% with NO plus 50% oxygen (P<0.001 versus air, P<0.005 versus oxygen and versus NO). NO alone improved PaO2 (+14%) and AaDO2 (-31%). Compared with 50% oxygen alone, NO plus 50% oxygen had a greater effect on AaDO2 (-18%) and PaO2 (+21%). CONCLUSIONS: Inhaled NO may have a therapeutic role in the management of HAPE. The combined use of inhaled NO and oxygen has additive effects on pulmonary hemodynamics and even greater effects on gas exchange. These findings indicate that oxygen and NO may act on separate but interactive mechanisms in the pulmonary vasculature.  相似文献   

14.
It has been shown that pulmonary vasodilation is sustained after discontinuation of inhaled nitric oxide (INO) during moderate hypoxic pulmonary hypertension (HPH) in swine. The present investigations demonstrated how INO dose, hypoxia duration, and endogenous NO production influence this important phenomenon. Fifteen adolescent Yorkshire swine were randomly assigned to three groups (n = 5 each) and underwent the following phasic experimental protocol: (I) Baseline ventilation (FIO2 = .3); (II) Initiating HPH (FIO2 = .16 to .18, PaO2 = 45 to 55 mm Hg); (III) INO at 10 ppm; (IV) Posttreatment observation; (V) INO of 80 ppm; and (VI) Posttreatment observation. Phase II (pretreatment hypoxia) lasted 30 minutes in group A (short hypoxia) and 120 minutes in group B (long hypoxia). N-nitro-L-arginine methyl ester (NAME) was used to inhibit nitric oxide synthase (NOS) throughout the experiment in group C (short hypoxia + NAME). Hemodynamics and blood gases were monitored by systemic and pulmonary artery catheters placed by femoral cutdown. Analysis of variance with post-hoc adjustment was used to compare groups at each phase, and the paired t test was used for comparisons within a group. With respect to baseline mean pulmonary artery pressure (MPAP) and pulmonary vascular resistance (PVR), there were no significant differences among the three groups. MPAP and PVR were significantly higher in group C than in group A during phase II, (MPAP, 76% +/- 8% v 33% +/- 2%; PVR, 197% +/- 19% v 78% +/- 10%; P < .05). There were no significant differences in MPAP or PVR during phases III through VI. When MPAP was expressed as percent dilation, 80 ppm caused significantly more dilation than did 10 ppm in all three groups. Groups A and C had significantly higher sustained pulmonary artery dilation after 80 ppm than after 10 ppm (A, 82% +/- 31% v 17% +/- 11%; C, 68% +/- 10% v 42% +/- 12%; both P < .05), but group B did not (43% +/- 15% v 30% +/- 9%; P = .25). High dose results in stronger vasodilation than low dose during and after INO for moderate HPH of short duration. Long hypoxia blunts this high-dose advantage. Endogenous NO inhibition augments HPH but does not decrease pulmonary vasodilation during or after INO.  相似文献   

15.
In nocturnal rodents, the c-fos gene is directly involved in the light mechanism of resetting of the suprachiasmatic nucleus (circadian clock). Light also induces c-fos expression in the retinal ganglion cell layer (GCL), but no attempt has been made to study the retinal responses to the phase-shifting effects of light. The expression of the Fos protein in each of the two populations of the GCL (displaced amacrine cells [DACs] and ganglion cells [GCs]) was analyzed in hamsters after light stimulation delivered early (circadian time [CT13]) and in the middle (CT18) of the subjective night. To evaluate as accurately as possible the number of GCs able to phase shift the locomotor activity rhythm (LAR), neonatal hamsters treated with monosodium glutamate (MSG) were also used, an in vivo model which displays retinal degeneration and LAR normally entrained by light. In nontreated hamsters, the number of Fos-immunoreactive (Fos-ir+) nuclei in the GCL was significantly higher at CT18 than at CT13. In MSG-treated hamsters, the number of Fos-ir+ nuclei was the same at both CTs and nonsignificantly different as those of nontreated hamsters at CT13. MSG treatment destroyed as many Fos-ir+ DACs as Fos-ir- DACs or Fos-ir+ GCs. Fos-ir+ GCs were less sensitive to neurotoxic than other GCs, as only 37% of them were destroyed by treatment versus 92% for Fos-ir- GCs. At CT18, a maximum of 3,500 GCs expressed Fos protein in nontreated hamsters versus only 2,200 in MSG-treated hamsters. This minor subgroup was sufficiently potent to normally synchronize the circadian rhythms to the Light/dark cycle in treated hamsters.  相似文献   

16.
Using a prospective audit, we have evaluated the efficacy of an integrated autotransfusion regimen which comprised predepositing and intra- and postoperative blood salvage in major orthopaedic surgery. We examined prospectively the records of 1785 patients (1198 females, 5867 males, mean age 62 (range 16-90) yr, preoperative haemoglobin concentration 13.4 (SD 1.4) g dl-1) undergoing total hip arthroplasty (THA, 1229 patients), THA after removal of internal fixation devices (RFD + THA, 18 patients), total knee arthroplasty (TKA, 263 patients), revision surgery of the hip (HR cup + stem revision, 197 patients; cup revision, 53 patients; stem revision, 16 patients) and total knee revision (TKR, nine patients). We estimated that the number of predonations (MSBOS = maximum surgery blood order schedule) was 2 u. for THA, TKA and TKR, and 3 u. for partial or total hip revision and total hip arthroplasty with fixation removal. We found that it was possible to obtain the MSBOS in 1597 patients (89.5%). Homologous red blood cell (HRBC) transfusions were carried out in 131 patients (7.3%). We found that the need to use HRBC was significantly associated with failure to meet the number of MSBOS, female sex, lower preoperative haemoglobin concentration, use of calcium heparin for antithrombosis prophylaxis, more extensive surgery, higher ASA rating and co-existing diseases such as coronary artery disease.  相似文献   

17.
18.
OBJECTIVE: To look for the effects of inhaled nitric oxide on oxygenation and pulmonary hemodynamics during acute hypercapnia in acute respiratory failure. DESIGN: Prospective, randomized, experimental study. SETTING: University research laboratory. SUBJECTS: Ten piglets, weighing 9 to 13 kg. INTERVENTIONS: Acute respiratory failure was induced by oleic acid infusion and repeated lung lavages with 0.9% sodium chloride. The protocol consisted of three randomly assigned periods with different PaCO2 levels. Tidal volume was reduced to induce hypercapnia. Inspiratory time was prolonged to achieve similar mean airway pressures. During permissive hypercapnia, pH was not corrected. At each PaCO2 period, the animals were ventilated with inhaled nitric oxide of 10 parts per million and without nitric oxide inhalation. MEASUREMENTS AND MAIN RESULTS: Continuous hemodynamic monitoring included right atrial, mean pulmonary arterial, and mean systemic arterial pressures, arterial and mixed venous oxygen saturations, and continuous flow recording at the pulmonary artery. In addition, airway pressures, tidal volumes, dynamic lung compliance and airway resistance, end-tidal CO2 concentrations, and arterial and mixed venous blood gases were measured. Data were obtained at baseline and after lung injury, at normocapnia, at two levels of hypercapnia with and without nitric oxide inhalation. Acute hypercapnia resulted in a significant decrease in blood pH and a significant increase in mean pulmonary arterial pressure. There was no significant change in PaO2 during normocapnia and hypercapnia. Inhaled nitric oxide significantly decreased the mean pulmonary arterial pressure during both hypercapnic periods. It significantly improved oxygenation during both normocapnia and hypercapnia. CONCLUSIONS: Acute hypercapnia resulted in a significant increase in pulmonary arterial pressure without influencing oxygenation and cardiac output. Inhaled nitric oxide significantly reduced the pulmonary hypertension induced by acute permissive hypercapnia but did not influence the flow through the pulmonary artery. Inhaled nitric oxide significantly improved oxygenation in this model of acute lung injury during normocapnia and acute hypercapnia.  相似文献   

19.
At present, there are only two laser Doppler perfusion imaging systems (LDIs) manufactured for medical applications: a 'stepwise' and a 'continuous' scanning LDI. The stepwise scanning LDI has previously been investigated and compared with coloured microsphere determined standardised flow. The continuous scanning LDI is investigated and compared with the stepwise scanning LDI for its ability to measure in vivo, hypoaemic, ligament tissue blood flow changes. The continuous scanning system was supplied with two lasers, red and near infrared (NIR), allowing for additional assessment of the effect of wavelength on imaging ligament perfusion. Perfusion images were obtained from surgically exposed rabbit medial collateral ligaments (MCL). Continuous and stepwise LDI scans were compared using correlation and linear regression analysis of image. averages and standard deviations. Using the same method of analysis, LDI measurements using red and NIR lasers indicated a high degree of correlation, at least over the ranges of perfusion assessed, indicating that red and NIR lasers measure similar regions of flow in the rabbit MCL. These experiments confirm that both LDI techniques provide a valid in vivo measure of dynamic changes in connective tissue perfusion and could have significant impact on the understanding and treatment of joint injury and arthritis.  相似文献   

20.
As inhaled nitric oxide (iNO) may differently increase bleeding time (BT) and inhibit platelet aggregation in normal and lung-injured patients or experimental models, we studied the effects of iNO on hemostasis in presence and absence of an endotoxic lung injury in the rat. Eight hours after intratracheal administration of endotoxin (lipopolysaccharide [LPS]) or its solvent (phosphate-buffered solution [PBS]), four groups of rats were randomized according to the presence or absence of 15 ppm iNO added for an additional 10 h. We measured BT, ex vivo platelet aggregation, plasma fibrinogen, euglobulin clot lysis time (ECLT), and platelet and aortic cyclic guanosine 5'-monophosphate (cGMP) contents. Acute lung inflammation did not influence BT, but increased platelet aggregability, fibrinogen levels, and platelet and aortic cGMP. In control and endotoxic rats, iNO increased BT, reduced platelet aggregability, and increased platelet cGMP. iNO increased aortic cGMP only in healthy rats. ECLT was increased by LPS and unchanged with iNO. These results suggest that the extrapulmonary "systemic" effects induced by iNO on hemostasis were not strictly similar in healthy and LPS rats, inflammation inducing proper changes in coagulation parameters. However, iNO attenuated the procoagulant activity induced by acute lung inflammation, suggesting a potentially beneficial effect of this therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号