首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inducible terpenes and lipoxygenase pathway products, e.g., green-leaf volatiles (GLVs), are emitted by plants in response to herbivory. They are used by carnivorous arthropods to locate prey. These compounds are highly reactive with atmospheric pollutants. We hypothesized that elevated ozone (O3) may affect chemical communication between plants and natural enemies of herbivores by degrading signal compounds. In this study, we have used two tritrophic systems (Brassica oleraceaPlutella xylostellaCotesia plutellae and Phaseolus lunatusTetranychus urticaePhytoseiulus persimilis) to show that exposure of plants to moderately enhanced atmospheric O3 levels (60 and 120 nl l−1) results in complete degradation of most herbivore-induced terpenes and GLVs, which is congruent with our hypothesis. However, orientation behavior of natural enemies was not disrupted by O3 exposure in either tritrophic system. Other herbivore-induced volatiles, such as benzyl cyanide, a nitrile in cabbage, and methyl salicylate in lima bean, were not significantly reduced in reactions with O3. We suggest that more atmospherically stable herbivore-induced volatile compounds can provide important long-distance plant-carnivore signals and may be used by natural enemies of herbivores to orientate in O3-polluted environments.  相似文献   

2.
Herbivorous and carnivorous arthropods use chemical information from plants during foraging. Aqueous leaf extracts from the syringa tree Melia azedarach and commercial formulations from the neem tree Azadirachta indica, Neemix 4.5®, were investigated for their impact on the flight response of two parasitoids, Cotesia plutellae and Diadromus collaris. Cotesia plutellae was attracted only to Plutella xylostella-infested cabbage plants in a wind tunnel after an oviposition experience. Female C. plutellae did not distinguish between P. xylostella-infested cabbage plants treated with neem and control P. xylostella-infested plants. However, females preferred infested cabbage plants that had been treated with syringa extract to control infested plants. Syringa extract on filter paper did not attract C. plutellae. This suggests that an interaction between the plant and the syringa extract enhances parasitoid attraction. Diadromus collaris was not attracted to cabbage plants in a wind tunnel and did not distinguish between caterpillar-damaged and undamaged cabbage plants. Headspace analysis revealed 49 compounds in both control cabbage plants and cabbage plants that had been treated with the syringa extract. Among these are alcohols, aldehydes, ketones, esters, terpenoids, sulfides, and an isothiocyanate. Cabbage plants that had been treated with the syringa extract emitted larger quantities of volatiles, and these increased quantities were not derived from the syringa extract. Therefore, the syringa extract seemed to induce the emission of cabbage volatiles. To our knowledge, this is the first example of a plant extract inducing the emission of plant volatiles in another plant. This interesting phenomenon likely explains the preference of C. plutellae parasitoids for cabbage plants that have been treated with syringa extracts.  相似文献   

3.
Transgenic soybean plants (RR) engineered to express resistance to glyphosate harbor a variant of the enzyme EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) involved in the shikimic acid pathway, the biosynthetic route of three aromatic amino acids: phenylalanine, tyrosine, and tryptophan. The insertion of the variant enzyme CP4 EPSPS confers resistance to glyphosate. During the process of genetic engineering, unintended secondary effects are likely to occur. In the present study, we quantified volatile organic compounds (VOCs) emitted constitutively or induced in response to herbivory by the soybean looper Chrysodeixis includens in transgenic soybean and its isogenic (untransformed) line. Since herbivore-induced plant volatiles (HIPVs) are known to play a role in the recruitment of natural enemies, we assessed whether changes in VOC profiles alter the foraging behavior of the generalist endoparasitic larval parasitoid, Meteorus rubens in the transgenic line. Additionally, we assessed whether there was a difference in plant quality by measuring the weight gain of the soybean looper. In response to herbivory, several VOCs were induced in both the conventional and the transgenic line; however, larger quantities of a few compounds were emitted by transgenic plants. Meteorus rubens females were able to discriminate between the odors of undamaged and C. includens-damaged plants in both lines, but preferred the odors emitted by herbivore-damaged transgenic plants over those emitted by herbivore-damaged conventional soybean plants. No differences were observed in the weight gain of the soybean looper. Our results suggest that VOC-mediated tritrophic interactions in this model system are not negatively affected. However, as the preference of the wasps shifted towards damaged transgenic plants, the results also suggest that genetic modification affects that tritrophic interactions in multiple ways in this model system.  相似文献   

4.
The female parasitic waspCotesia kariyai discriminated between the volatiles of corn leaves infested by younger host larvaePseudaletia separata (first to fourth instar) and uninfested leaves in a Y-tube olfactometer; the wasps were attracted to the infested leaves. In contrast, when corn plants were infested by the later stages (fifth and sixth instar) of the armyworm, the wasps did not distinguish between infested corn leaves and uninfested corn leaves in the olfactometer. Mechanically damaged leaves were no more attractive than undamaged leaves, and host larvae or their feces were not attractive to the parasitoid. Through chemical analysis, the herbivore-induced plant volatiles were identified in the headspace of infested corn leaves. The herbivore-induced volatiles (HIVs) constituted a larger proportion of the headspace of corn leaves infested by early instar armyworms than of corn leaves infested by late instar armyworms. Application of third-instar larval regurgitant onto artificially damaged sites of leaves resulted in emission of parasitoid attractants from the leaf, whereas leaves treated with sixth-instar regurgitant did not. The function of this herbivore-stage related specificity of herbivore-induced synomones is discussed in a tritrophic context.  相似文献   

5.
Nitrogen (N) is an important macronutrient for plants and insects alike, and the availability of this critical element may considerably modify bottom-up effects in tritrophic systems. By using hydroponically cultured Glycine max, we investigated the impact of N deficiency on plant growth, photosynthetic efficiency, primary metabolism, and herbivore-induced volatile (VOC) emission. Cascading effects of N deficiency on higher trophic levels were assessed by measuring the performances of the herbivore Spodoptera frugiperda and its parasitoid Cotesia marginiventris. In addition, we studied the volatile-guided foraging behavior of C. marginiventris to explore whether nutrient stress affects the plant’s indirect defense. Our results show that photosynthetic efficiency, leaf N, and soluble protein content were significantly reduced in N deficient plants whereas root biomass was increased. Nitrogen starved plants emitted the same range of herbivore-induced VOCs as control plants, but quantitative changes occurred in the release of the main compound and two other volatiles. Herbivore growth and the performance of parasitoids developing inside the affected hosts were attenuated when caterpillars fed on N deficient plants. The behavioral response of C. marginiventris to induced VOCs from N deficient hosts, however, remained unaffected. In summary, N stress had strong bottom-up effects over three trophic levels, but the plant’s indirect defense remained intact.  相似文献   

6.
FemaleMicroplitis croceipes wasps were tested in a wind tunnel for their ability to orient to various concentrations of eight different green leaf volatile (GLV) substances [hexanal, (E)-2-hexenal, (E)-2-hexen-1-ol, (Z)-3-hexen-1-ol, (E)-2-hexenyl acetate, (Z)-3-hexenyl acetate, (Z)-3-hexenyl propionate, and (Z)-3-hexenyl butyrate]. Overall, the esters elicited the greatest percentage of successful orientation flights, the alcohols elicited an intermediate response, and the aldehydes elicited a low response. The semilog dose-response curves were generally hill-shaped with high responses at medium release rates and low responses at high or low release rates. For the aldehydes, positive responses occurred at all GLV release rates between 0.01 and 100 nl/min. For some alcohols and esters, positive responses occurred at release rates as low as 1 pl/min and as high as 1μl/min. These data show thatM. croceipes wasps are strongly attracted to GLVs and are capable of orienting to GLV concentrations that would occur in nature when a caterpillar feeds on a green leaf. Hence, in nature, GLVs may be important clues, enablingM. croceipes to locate their hosts.  相似文献   

7.
Plants under attack by aboveground herbivores emit complex blends of volatile organic compounds (VOCs). Specific compounds in these blends are used by parasitic wasps to find their hosts. Belowground induction causes shifts in the composition of aboveground induced VOC blends, which affect the preference of parasitic wasps. To identify which of the many volatiles in the complex VOC blends may explain parasitoid preference poses a challenge to ecologists. Here, we present a case study in which we use a novel bioinformatics approach to identify biologically relevant differences between VOC blends of feral cabbage (Brassica oleracea L.). The plants were induced aboveground or belowground with jasmonic acid (JA) and shoot feeding caterpillars (Pieris brassicae or P. rapae). We used Partial Least Squares—Discriminant Analysis (PLSDA) to integrate and visualize the relation between plant-emitted VOCs and the preference of female Cotesia glomerata. Overall, female wasps preferred JA-induced plants over controls, but they strongly preferred aboveground JA-induced plants over belowground JA-induced plants. PLSDA revealed that the emission of several monoterpenes was enhanced similarly in all JA-treated plants, whereas homoterpenes and sesquiterpenes increased exclusively in aboveground JA-induced plants. Wasps may use the ratio between these two classes of terpenes to discriminate between aboveground and belowground induced plants. Additionally, it shows that aboveground applied JA induces different VOC biosynthetic pathways than JA applied to the root. Our bioinformatic approach, thus, successfully identified which VOCs matched the preferences of the wasps in the various choice tests. Additionally, the analysis generated novel hypotheses about the role of JA as a signaling compound in aboveground and belowground induced responses in plants.  相似文献   

8.
The vast majority of studies of plant indirect defense strategies have considered simple tritrophic systems that involve plant responses to attack by a single herbivore species. However, responses by predators and parasitoids to specific, herbivore-induced, volatile blends could be compromised when two or more different herbivores are feeding on the same plant. In Y-tube olfactometer studies, we investigated the responses of an aphid parasitoid, Diaeretiella rapae (McIntosh) (Hymenoptera: Braconidae), to odors from cabbage plants infested with the peach-potato aphid Myzus persicae (Sulzer) (Homoptera: Aphididae), in both the presence and absence of a lepidopteran caterpillar, Plutella xylostella L. (Lepidoptera: Plutellidae). Female parasitoids chose aphid-infested plants over uninfested plants but did not distinguish between caterpillar-infested and uninfested plants. When given a choice between odors from an aphid-infested plant and those from a plant infested with diamondback moth larvae, they significantly chose the former. Furthermore, the parasitoids responded equally to odors from a plant infested with aphids only and those from a plant infested with both aphids and caterpillars. The results support the hypothesis that the aphid and the caterpillar induce different changes in the volatile profile of cabbage plants and that D. rapae females readily distinguish between the two. Furthermore, the changes to the plant volatile profile induced by the caterpillar damage did not hinder the responses of the parasitoid to aphid-induced signals.  相似文献   

9.
Many parasitic wasps are attracted to volatiles that are released by plants when attacked by potential hosts. The attractiveness of these semiochemicals from damaged plants has been demonstrated in many tritrophic systems, but the physiological mechanisms underlying the insect responses are poorly understood. We recorded the antennal perception by three parasitoids (Cotesia marginiventris, Microplitis rufiventris, and Campoletis sonorensis) to volatiles emitted by maize, cowpea, and cotton plants after attack by the common caterpillar pest Spodoptera littoralis. Gas chromatography-electroantennography (GC-EAG) recordings showed that wasps responded to many, but not all, of the compounds present at the physiologically relevant levels tested. Interestingly, some minor compounds, still unidentified, elicited strong responses from the wasps. These results indicate that wasps are able to detect many odorant compounds released by the plants. It remains to be determined how this information is processed and leads to the specific behavior of the parasitoids.  相似文献   

10.
Based on the fact that Pichia cell growth follows a Monod equation under the condition of methanol concentration limitation, a kinetics model of recombinant methylotrophic yeast Pichia pastoris expressing porcine insulin precursor (PIP) was developed in the quasi-steady state in the induction phase. The model revealed that the relationship between specific growth rate (μ) and substrate methanol concentration was in accord with the Monod equation. The fermentation kinetic parameters maximum specific growth rate (μ max ), saturation constant (K s ) and maintenance coefficient (M) were estimated to be 0.101 h−1, 0.252 g l −1, and 0.011 g MeOH g−1 DCW h−1, respectively. The unstructured model was validated in methanol induction phase with different initial cell densities. Results showed that the maximum specific protein production rate (q p.max ) of 0.098 mg g−1 DCW h−1 was achieved when μ was kept at 0.016 h−1, and the maximum yield of PIP reached 0.97 g l −1, which was 1.5-fold as that of the control. Therefore, the simple Monod model proposed has proven to be a robust control system for recombinant porcine insulin precursor production by P. pastoris on pilot scale, which would be further applied on production scale. This work was presented at 13 th YABEC symposium held at Seoul, Korea, October 20–22, 2007.  相似文献   

11.
Apple replant is a widespread agricultural problem documented in all of the major fruit-growing regions of the world. In order to better understand the phytotoxic mechanisms induced by allelochemicals involved with this problem, Malus prunifolia plants were grown hydroponically to the six-leaf-stage in the presence of phthalic acid (0 or 1 mM) for 5, 10, or 15 days. Apple plants were evaluated for: shoot and root length, fresh and dry weight, malondialdehyde (MDA) content, hydrogen peroxide (H2O2) content, superoxide radical (O2 ·−) generation rate, and antioxidant enzyme activities. Shoot and root lengths and fresh and dry weights of M. prunifolia decreased in plants exposed to phthalic acid. MDA and H2O2 content increased in phthalic acid-treated plants as did the generation rate of O2 ·− in M. prunifolia roots. The activities of superoxide dismutase (EC 1.15.1.1), peroxidase (EC 1.11.1.7), catalase (EC 1.11.1.6), ascorbate peroxidase (EC 1.11.1.11), glutathione reductase (EC 1.6.4.2), dehydroascorbate reductase (EC 1.8.5.1), and monodehydroascorbate reductase (EC 1.6.5.4) increased in phthalic acid-stressed roots compared with control roots. These results suggest that activation of the antioxidant system by phthalic acid led to the formation of reactive oxygen species that resulted in cellular damage and the decrease of M. prunifolia growth.  相似文献   

12.
Al-substituted mesoporous FSM-16 materials with different SiO2/Al2O3 (28–452) ratios have been synthesized by intercalating kanemite using cetyltrimethylammonium bromide (CTMABr) as the intercalating agent and sodium aluminate as the aluminium source, and characterized by different physico-chemical characterization techniques. The XRD measurements revealed a slightly disordered hexagonal packing of channels in the Al-FSM-16 samples. The thermal stability of Al-FSM-16 samples was confirmed by DTA analysis, where no structural changes were observed in the temperature range of 600–900°C. No significant changes were observed in the morphology of kanemite and the Al-FSM-16 sample obtained from kanemite as revealed by the SEM analysis. This result clearly indicated that the Al-FSM-16 sample is formed via a folded sheet mechanism. Moreover, TEM measurements confirmed the presence of a slightly disordered hexagonal array of channels in Al-FSM-16 in agreement with the XRD results. The BET surface areas (638–788 m2 g−1) and pore volumes (0.57–0.87 cm3 g−1) were indicative of the high porosity of the Al-FSM-16 samples. The Al-FSM-16 (SiO2/Al2O3 = 49) sample exhibited excellent hydrothermal stability at 150°C. The Al-FSM-16 samples were found to catalyze the isomerization of m-xylene to p- and o-xylenes.  相似文献   

13.
After herbivore attack, plants release a plethora of different volatile organic compounds (VOCs), which results in odor blends that are attractive to predators and parasitoids of these herbivores. VOCs in the odor blends emitted by maize plants (Zea mays) infested by lepidopteran larvae are well characterized. They are derived from at least three different biochemical pathways, but the relative importance of each pathway for the production of VOCs that attract parasitic wasps is unknown. Here, we studied the importance of shikimic acid derived VOCs for the attraction of females of the parasitoids Cotesia marginiventris and Microplitis rufiventris. By incubating caterpillar-infested maize plants in glyphosate, an inhibitor of the 5-enolpyruvylshikimate-3-phospate (EPSP) synthase, we obtained induced odor blends with only minute amounts of shikimic acid derived VOCs. In olfactometer bioassays, the inhibited plants were as attractive to naive C. marginiventris females as control plants that released normal amounts of shikimic acid derived VOCs, whereas naive M. rufiventris females preferred inhibited plants to control plants. By adding back synthetic indole, the quantitatively most important shikimic acid derived VOC in induced maize odors, to inhibited plants, we showed that indole had no effect on the attraction of C. marginiventris and that M. rufiventris preferred blends without synthetic indole. Exposing C. marginiventris females either to odor blends of inhibited or control plants during oviposition experiences shifted their preference in subsequent olfactometer tests in favor of the experienced odor. Further learning experiments with synthetic indole showed that C. marginiventris can learn to respond to this compound, but that this does not affect its choices between natural induced blends with or without indole. We hypothesize that for naïve wasps the attractiveness of an herbivore-induced odor blend is reduced due to masking by nonattractive compounds, and that during oviposition experiences in the presence of complex odor blends, parasitoids strongly associate some compounds, whereas others are largely ignored.  相似文献   

14.
The plant semiochemical cis-jasmone primes/induces plant resistance that deters herbivores and attracts natural enemies. We studied the induction of volatile organic compounds (VOCs) in winter wheat and spring barley after exposure of plants to three synthetic cis-jasmone doses (50 μl of 1, 100, and 1?×?104 ng μl?1) and durations of exposure (1, 3, and 6 h). Cereal leaf beetle, Oulema melanopus, adult behavioral responses were examined in a Y-tube olfactometer to cis-jasmone induced plant VOC bouquets and to two synthetic blends of VOCs (3 green leaf volatiles (GLVs); 4 terpenes?+?indole). In both cereals, eight VOCs [(Z)-3-hexanal, (Z)-3-hexanol, (Z)-3-hexanyl acetate, (Z)-β-ocimene, linalool, β-caryophyllene, (E)-ß–farnesene, and indole] were induced 100- to 1000-fold after cis-jasmone exposure. The degree of induction in both cereals was usually positively and linearly associated with increasing exposure dose and duration. However, VOC emission rate was only ~2-fold greater from plants exposed to the highest vs. lowest cis-jasmone exposure doses (1?×?104 difference) or durations (6-fold difference). Male and female O. melanopus were deterred by both cereal VOC bouquets after plant exposure to the high cis-jasmone dose (1?×?104 ng μl?1), while females were also deterred after plant exposure to the low dose (1 ng μl?1) but attracted to unexposed plant VOC bouquets. Both O. melanopus sexes were repelled by terpene/indole and GLV blends at two concentrations (25 ng?·?min?1; 125 ng?·?min?1), but attracted to the lowest dose (1 ng?·?min?1) of a GLV blend. It is possible that the biologically relevant low cis-jasmone dose has ecological activity and potential for inducing field crop VOCs to deter O. melanopus.  相似文献   

15.
A comparative study was conducted to assess the contact and fumigant toxicities of eleven monoterpenes on two important stored products insects—, Sitophilus oryzae, the rice weevil, and Tribolium castaneum, the rust red flour beetle. The monoterpenes included: camphene, (+)-camphor, (−)-carvone, 1-8-cineole, cuminaldehyde, (l)-fenchone, geraniol, (−)-limonene, (−)-linalool, (−)-menthol, and myrcene. The inhibitory effect of these compounds on acetylcholinesterase (AChE) activity also was examined to explore their possible mode(s) of toxic action. Although most of the compounds were toxic to S. oryzae and T. castaneum, their toxicity varied with insect species and with the bioassay test. In contact toxicity assays, (−)-carvone, geraniol, and cuminaldehyde showed the highest toxicity against S. oryzae with LC50 values of 28.17, 28.76, and 42.08 μg/cm2, respectively. (−)-Carvone (LC50 = 19.80 μg/cm2) was the most effective compound against T. castaneum, followed by cuminaldehyde (LC50 = 32.59 μg/cm2). In contrast, camphene, (+)-camphor, 1-8-cineole, and myrcene had weak activity against both insects (i.e., LC50 values above 500 μg/cm2). In fumigant toxicity assays, 1-8-cineole was the most effective against S. oryzae and T. castaneum (LC50 = 14.19 and 17.16 mg/l, respectively). Structure-toxicity investigations revealed that (−)-carvone—, a ketone—, had the highest contact toxicity against the both insects. 1-8-Cineole—, an ether—, was the most potent fumigant against both insects. In vitro inhibition studies of AChE from adults of S. oryzae showed that cuminaldehyde most effectively inhibited enzyme activity at the two tested concentrations (0.01 and 0.05 M) followed by 1-8-cineole, (−)-limonene, and (l)-fenchone. 1-8-Cineole was the most potent inhibitor of AChE activity from T. castaneum larvae followed by (−)-carvone and (−)-limonene. The results of the present study indicate that (−)-carvone, 1,8-cineole, cuminaldehyde, (l)-fenchone, and (−)-limonene could be effective biocontrol agents against S. oryzae and T. castaneum.  相似文献   

16.
The generation of active chlorine on Ti/Sn(1−x)Ir x O2 anodes, with different compositions of Ir (x = 0.01, 0.05, 0.10 and 0.30 ), was investigated by controlled current density electrolysis. Using a low concentration of chloride ions (0.05 mol L−1) and a low current density (5 mA cm−2) it was possible to produce up to 60 mg L−1 of active chlorine on a Ti/Sn0.99Ir0.01O2 anode. The feasibility of the discoloration of a textile acid azo dye, acid red 29 dye (C.I. 16570), was also investigated with in situ electrogenerated active chlorine on Ti/Sn(1−x)Ir x O2 anodes. The best conditions for 100% discoloration and maximum degradation (70% TOC reduction) were found to be: NaCl pH 4, 25 mA cm−2 and 6 h of electrolysis. It is suggested that active chlorine generation and/or powerful oxidants such as chlorine radicals and hydroxyl radicals are responsible for promoting faster dye degradation. Rate constants calculated from color decay versus time reveal a zero order reaction at dye concentrations up to 1.0 × 10−4 mol L−1. Effects of other electrolytes, dye concentration and applied density currents also have been investigated and are discussed.  相似文献   

17.
For the syntheses of LiNi1−y Fe y O2 (0.000 ≤ y ≤ 0.300), mixtures of the starting materials with the desired compositions were preheated in an air atmosphere at 400 °C for 30 min and calcined in air at 700 °C for 48 h. The phases appearing in the intermediate reaction steps for the formation of lithium nickel oxide are deduced from the DTA analysis. XRD analysis, FE-SEM observation, FTIR analysis and electrochemical measurement were performed for the synthesized Li1−z (Ni1−y Fe y )1+z O2 (0.000 ≤ y ≤ 0.300) samples. The samples of Li1−z (Ni1−y Fe y )1+z O2 with y = 0.025 and 0.050 have higher first discharge capacities than Li1−z (Ni1−y Fe y )1+z O2 with y = 0.000 and better or similar cycling performance at the 0.1 C rate in the voltage range of 2.7–4.2 V. Similar results have not previously been reported except for Co-substituted LiNiO2. The sample Li1−z (Ni0.975Fe0.025)1+z O2 has the highest first discharge capacity (176.5 mAh g−1). Rietveld refinement of the XRD patterns of LiNi1−y Fe y O2 (0.000 < y ≤ 0.100) from a starting structure model [Li,Ni]3b[Li,Ni,Fe]3a[O2]6c showed that cation disordering occurred in the samples.  相似文献   

18.
LiMn2O4–y Br y nanoparticles were synthesized successfully for the first time by a room temperature solid-state coordination method. X-ray diffractometry patterns indicated that the LiMn2O4–y Br y powders were well-crystallized pure spinel phase. Transmission electron microscopy images showed that the LiMn2O4–y Br y powders consisted of small and uniform nanosized particles. Synthesis conditions such as the calcination temperature and the content of Br were investigated to optimize the ideal condition for preparing LiMn2O4–y Br y with the best electrochemical performances. The optimized synthesis condition was found in this work; the calcination temperature is 800 °C and the content of Br is 0.05. The initial discharge capacity of LiMn2O3.95Br0.05 obtained from the optimized synthesis condition was 134 mAh/g, which is far higher than that of pure LiMn2O4, indicating introduction of Br in LiMn2O4 is quite effective in improving the initial discharge capacity.  相似文献   

19.
LiNi1−y Co y O2 samples were synthesized at 800 °C and 850 °C, by the solid-state reaction method, using the starting materials LiOH·H2O, Li2CO3, NiO, NiCO3, Co3O4 and CoCO3. The LiNi1−y Co y O2 synthesized using Li2CO3, NiO and Co3O4 exhibited the α-NaFeO2 structure of the rhombohedral system (space group ). As the Co content increased, the lattice parameters a and c decreased. The reason is that the radius of the Co ion is smaller than that of the Ni ion. The increase in c/a shows that a two-dimensional structure develops better as the Co content increases. The LiNi0.7Co0.3O2 synthesized at 800 °C using LiOH · H2O, NiO and Co3O4 exhibited a larger first discharge capacity of 162 mAh g−1 than the other samples. The cycling performances of the samples with the first discharge capacity larger than 150 mAh g−1 were investigated. LiNi0.9Co0.1O2 synthesized at 850 °C using Li2CO3, NiO and Co3O4 showed excellent cycling performance. Samples with larger first discharge capacity will have a greater tendency for lattice destruction due to expansion and contraction during intercalation and deintercalation, than samples with smaller first discharge capacity. As the first discharge capacity increases, the capacity fading rate thus increases.  相似文献   

20.
The ring-opening polymerization (ROP) of D,L-lactide (DLLA) initiated by tin(II) 2-ethylhexanoate (Sn(Oct)2) on the surface-initiated magnetite (Fe3O4) nanoparticles was performed at 130 °C. Effects of the polymer molar mass and concentration on the amount of polymer on the surface were investigated. The number average molecular weights, M n , that we obtained by both nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC) methods fit well within the accuracy of the applied methods, and range from 1,100 g · mol−1 to 4,040 g · mol−1. The surface functionalization density for up to 3,900 initiation sites per particle was obtained. The composition of various particles with poly(D,L-lactide) (PDLLA) corona is by means of thermogravimetric analysis (TGA), and indicates magnetite (Fe3O4) content between 17 wt.% and 59 wt.%. An erratum to this article can be found at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号