首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This paper presents the latest results of continuous investigations of cable insulations degradation of crosslinked polyethylene (XPLE) and ethylene-propylene with rubber based formulation (EPR) when subjected to electric stress and heating in the presence of water or water vapour. The paper deals with water absorption and diffusion in two kinds of crosslinked polyethylene insulation-dry-cured and steam-cured, and steam-cured EPR insulation. The aim of this investigation is to present the results of the influence of changing of water or water vapour pressure in the conductors of XLPE and EPR cables in different service conditions on the electric characteristics of XLPE and EPR insulations-breakdown voltage (AC BDV), dissipation factor (tan δ) and rata of partial discharge (RPD). In this paper, RPD is defined as, the maximum electrical field when the beginning partial discharge in the cable insulation and partial discharge were measured in accordance with the IEC standard. This paper also shows the relation between AC BDV and water content, and AC BDV and tan δ in XLPE and EPR insulations. In this testing the tap water was put in the cable conductors and the ends were properly closed by terminal boxes. The results indicate that the combined effects of water or water vapour, pressure, moisture, electric field and temperature will greatly accelerate deterioration of XLPE and EPR insulations  相似文献   

2.
Cables as elements of power distribution system have great influence on its reliable service and overall planning requirements. During last years, crosslinked polyethylene (XLPE) cables have been more and more used in power systems. This paper presents the results of an investigation of changing of (XLPE) cables insulation breakdown stress (AC BDS) due to water absorption. The paper deals with AC BDS of the following kinds of XLPE cable insulations: steam and dry cured with water tree retardant crosslinked polyethylene (TR-XLPE) and non-tree retardant crosslinked polyethylene (XLPE). During tests, the tap water was injected into, (1) conductor with cable ends closed; (2) into cable conductor with ends opened; and (3) into metallic screen with cable ends opened. The presence of water in XLPE cables was subjected to electrical stress and heating. AC BDS tests were performed as a function of aging time and water content in the cable insulation at different aging temperatures. Also, in this investigation, tests with the changing of AC BDS in the radial direction of unaged and aged XLPE cable insulations were carried out.  相似文献   

3.
This review summarizes research on treeing phenomena, i.e. the formation of electrical trees and water trees, that has been undertaken in Japan for the development of 500 kV XLPE cable. Section 1 presents the results of factors affecting XLPE cable insulation breakdown under commercial ac and lightning impulse voltages. Section 2 verifies the phenomena of electrical tree formation in XLPE cable insulation using block samples and model cables, and gives the results of studies to determine the level electrical field stress initiation for such trees. Section 3 summarizes the results of studies on long-term aging characteristics, which is a particular problem under commercial ac voltages, while Section 4 explains how this research influenced the design of 500 kV XLPE cable insulation. All authors were members of `The investigation committee of fundamental process of treeing degradation' under IEEJ  相似文献   

4.
To study the long-term characteristics of XLPE cables installed in free air and in water, aging tests were conducted under various testing conditions using XLPE cables with both 3.5 mm and 6 mm insulation. From the Weibull plots of lifetime distribution under the voltage stress EL as the minimum breakdown strength, the minimum value of time to breakdown tL under the constant voltage was estimated. The results of accelerated aging tests of XLPE cables installed in free air demonstrated that the V-t characteristics of XLPE cables could not be described by the conventional inverse power law (t ∝ V−n) with a single constant life exponent n. Based on the microscopic observation of a sliced insulation removed from XLPE cables, it was concluded that bow-tie trees with longer tree length observed in cables tested in water were caused by the moisture from outside, whereas the trees in cables tested in free air were caused by the residual moisture originally existing in the insulation. The breakdown strength of the aged cables tested in water increases through cable drying. However, it does not recover to the original values.  相似文献   

5.
高压XLPE电缆绝缘V t特性研究综述   总被引:2,自引:0,他引:2  
交联聚乙烯(cross linked polyethylene,XLPE)绝缘电力电缆是输电线路的重要电 力设备。针对高压交流和直流电缆系统的运行现状,介绍了运用V t特性(击穿电压与击穿时间的关系)曲线描述XLPE电缆绝缘的电老化寿命模型,分析了国内外高压交、直流XLPE电缆绝缘V t特性的研究方法及相关结果。已有的研究结果表明,交流XLPE电缆绝缘的电老化寿命指数n值在9~25之间,直流XLPE电缆绝缘的电老化寿命指数n值在13~20之间。国内目前尚未见有关直流电缆绝缘V t特性研究的文献报道。  相似文献   

6.
以高压直流交联聚乙烯(cross-linked polymeric,XLPE)电缆为研究对象,研究讨论了现阶段描述直流电压下绝缘材料电导率公式对XLPE材料的适用情况。首先基于两种不同电导率公式推导了稳态下高压直流电缆中电场反转的临界温差、绝缘层温度分布、电场、电导率和距离电缆中心的乘积以及绝缘层电场分布,并通过比较有限元仿真结果和公式计算结果证明了所推公式的可靠性。然后通过对不同电导率公式计算值的比较,以及不同公式在相同条件下引起的绝缘材料热电特性,证明了公式互换的可能性。  相似文献   

7.
防水型交联聚乙烯绝缘电力电缆结构分析   总被引:1,自引:1,他引:0  
交联聚乙烯绝缘电力电缆因其良好的机械、电气性能和便于敷设、免维护等性能在电力系统中得到了广泛的应用。但是在数十年的运行过程中发现,电缆受潮以后性能会大幅下降,特别是容易引发会严重影响电缆使用寿命和可靠性的水树枝。经过各国专业人员努力攻关,近年来已有不少针对电缆受潮的阻水技术问世,有关新型阻水电缆结构的专利不断出现。根据对国内外文献的检索结果,对当前常用的交联聚乙烯电缆阻水技术进行了分析和分类,并针对交联聚乙烯电缆阻水技术的发展提出了自己的观点。  相似文献   

8.
To evaluate the effect of using siloxane liquid to rejuvenate water tree defects in cross-linked polyethylene(XLPE)cables,we investigated the electrical properties and micro-structures of water-tree aged XLPE cables after siloxane liquid injection treatment.The water-tree aged samples were prepared by performing accelerated aging experiment using water-needle electrodes,and the siloxane liquid is injected into the aged cable through a pressurized injection system.Dielectric loss factors of the samples before and after the rejuvenation were compared.The water trees and the internal filler were observed using scanning electron microscope(SEM).Electrical properties of the reactants are measured.Electric field simulation is conducted to verify the rejuvenation effect by finite element method.The results show that the siloxane liquid diffused into the insulation layer in a short time and reacted with water in the water trees.The electrical properties of the formed organic filler are in accord with that of XLPE.Therefore,the action between siloxane and water can inhibit the growth of water trees and reduce electric field distortion of the water tree areas.As a result,insulation performance of the cable is enhanced.A 70 m long cable was aged and rejuvenated in laboratory and an on-site rejuvenation experiment was conducted,and in both cases the dielectric loss factor and leakage current halved after rejuvenation.  相似文献   

9.
配网交联聚乙烯(cross linked polyethylene, XLPE)电缆的严重击穿故障大多发生在电缆接头处,主要由电缆接头在制造和安装过程中的工艺缺陷引起。文中采用模拟电荷法研究电缆接头4种典型缺陷,即气隙、水膜、金属碎屑和金属外破附近的电场分布特征;然后采用电场计算与随机漫步理论相结合的方法,分析缺陷引发的电树枝的分布规律。同时,测量带缺陷配网XLPE电缆接头样本周围的实际电场分布,并比较测量结果与计算结果。结果表明,采用电场测量的方法可以直接有效地识别电缆接头内部缺陷类型,相比气隙、水膜缺陷,导电缺陷造成的电场畸变更为显著。缺陷引发的电场畸变大于临界电场值时会引起电树发展,电树发展的轨迹长度与场强大小呈正相关,导电缺陷引发的电树枝有较大概率向缆芯方向发展,更易引起XLPE绝缘击穿。  相似文献   

10.
国产高压XLPE电缆绝缆中允许杂质尺寸的试验研究及方法   总被引:1,自引:0,他引:1  
电树枝是影响XLPE电缆长期老化性能的重要因素,而确定高压XLPE电缆绝缘层中允许的最大杂质尺寸对于保证其长期老化性能是很重要的。本文利用针电极模拟杂质对从国产220kVXLPE电缆绝缘中所取得的试样进行了相关试验,得到电树枝起始电场强度约为270kV/mm,而杂质尖端最小曲率半径约为10μm。通过计算得到对于220kVXLPE电缆,杂质的最大允许尺寸约为130μm。这一结果与国家标准规定的允许杂质尺寸125μm基本符合,这一试验方法可以用于高压XLPE电缆中允许杂质尺寸的研究。  相似文献   

11.
This paper presents the results of a continuing investigation into effect of water on water absorption and density of crosslinked polyethylene (XLPE). The experimental set up was made for the following XLPE cable insulations: steam and dry cured with water tree retardant crosslinked polyethylene (TR-XLPE) and without water tree retardant crosslinked polyethylene (natural XLPE). During tests, the tap water was injected (1) into the cable conductor with cable ends closed, (2) into the cable conductor with cable ends opened, and (3) into the metallic screen with cable ends opened. The XLPE cable insulation together with the water present in the cable was subjected to electrical stress and heating. The results were analyzed theoretically and experimentally. The aim of this paper is to present the results of the influence of the water on water absorption and density of various kinds of XLPE cable insulation in different service conditions  相似文献   

12.
水树是电缆主绝缘的主要劣化现象之一,严重影响电缆的使用寿命。正确评价长有水树的材料的电场分布,对于理解水树的生长机理以及水树引起的介质击穿是非常重要的。采用具有不同物理化学性能的热老化XLPE电缆绝缘和与外加电场梯度方向成一定角度的非常规的水针电极结构进行水树枝加速老化实验,用有限元方法对水树加速老化实验中采用的结构模型进行数值电场分析,研究了水树尖端处电场增强对水树枝老化发展的影响。  相似文献   

13.
The main purpose of this paper is to show the strong correlation between corrosion of the metallic aluminum conductor and the formation of interconnected cracks / voids in the conductor screen, creating initiation sites for vented water trees in service aged medium voltage XLPE cables. The results show that porous structures in the conductor screen previously reported for laboratory aged insulation systems, also develop in the conductor screen in service aged medium voltage XLPE cables. These structures can bridge the screen and serve as path for contaminants and corrosion products from the aluminum conductor and initiate water trees. A prerequisite for the formation of such structures is the presence of liquid water at the interface between the conductor and conductor screen causing corrosion. The initiation site of such structures has been identified, and is likely caused by environmental stress cracking (ESC). Initiation sites were determined in all cables, but porous structures in the conductor screen were only observed in the cable suffered from service failure, where liquid water had entered the cable conductor between the strands. Severe degradation of the XLPE insulation was observed at the initiation sites for water trees growing from these structures.  相似文献   

14.
交联聚乙烯(XLPE)电缆以其优良的机械和电气性能广泛应用于现代电力系统。研究表明,在直流电压作用下绝缘中容易形成空间电荷,导致电场畸变,加速绝缘老化。国内外很少关于交流电压下空间电荷对XLPE电缆绝缘影响的研究。本文综述了交流电压下空间电荷对XLPE电缆绝缘老化的影响及其作用机理,并介绍了交流电压下测量空间电荷分布的改进的电声脉冲法。结果表明,交流电压下,空间电荷分布特性影响XLPE电缆绝缘老化。  相似文献   

15.
XLPE电缆绝缘中水树的形成机理和抑制方法分析   总被引:5,自引:0,他引:5  
叙述了交联聚乙烯电缆中的水树对中高压XLPE电缆的危害性;介绍了水树的本质、水树生长特性,引发水树的电-机械理论和化学反应理论;分析了影响水树生长的因素和国内外抗水树电缆料的研究情况。  相似文献   

16.
Although many researchers have investigated voltage life characteristics of XLPE cables, the voltage life curve of XLPE insulation has not been made clear because of large deviations in the obtained data. Moreover, the voltage life curve of a XLPE cable, which is significantly affected by defect size and shape, cannot be applied to another cable having different defects. The authors obtained an intrinsic stress life curve of XLPE which included no defects. The intrinsic stress life curve demonstrates the existence of a threshold stress, which causes no degradation in the insulation. The application of the intrinsic stress life curve makes possible to estimate the voltage life curve of any cable with known defects. A method for calculating the defect size that would not initiate any degradation in XLPE insulation under a given electrical stress is proposed  相似文献   

17.
交联聚乙烯(XLPE)因其优异的介电、理化性能而被广泛应用于电缆绝缘领域。在电缆的服役过程中,电缆绝缘内部会积聚空间电荷,严重时可引发电场畸变,导致电缆击穿事故发生。对于直流XLPE电缆,空间电荷的积聚及影响更加不容忽视。针对直流XLPE电缆绝缘中产生的空间电荷积聚效应,目前学界主要采用共混改性、聚合物链段接枝极性基团、纳米掺杂改性及制备高纯净绝缘料等方法来进行控制,改性后的直流XLPE电缆绝缘对空间电荷产生的抑制效果均有所提升。文中首先对上述直流XLPE电缆绝缘中空间电荷的抑制方法进行综述,介绍其抑制原理以及相应的抑制效果,然后对比总结不同抑制空间电荷方法的优缺点,最后对未来直流XLPE电缆绝缘中空间电荷抑制方法的研究发展作出展望。  相似文献   

18.
The use of XLPE as the insulation for power cables has grown steadily since it first introduction more than 30 years ago. Today XLPE is rapidly becoming the preferred insulation system for even the highest transmission voltages. This preference is due to the high reliability, low dielectric losses, and low environmental impact that can be achieved with XLPE. The positive effects of high quality insulation materials on improved cable performance have been well known since the start of cable making. The purpose of this paper is to investigate the technical background for the cleanliness levels and to quantify the level of performance required from clean materials. The advantages of clean insulation materials are seen at all voltages. However, this work focuses on the technical basis for the benefits for HV and EHV cables, which typically are designed with a water impervious layer to ensure that the cable remains dry throughout its entire lifetime. The presence of metallic contaminants in MV cable is known to enhance the growth of trees by raising the electric stress level locally. The singular impact of cleanliness on the performance of MV cables is somewhat more complicated as it is influenced both by the cleanliness of the insulation and the ability of the insulation material to resist the growth of water trees.  相似文献   

19.
Dry‐cured and extruded three‐layer (E‐E type) 6.6‐kV cross‐linked polyethylene (XLPE) cables were introduced into electric power systems more than 30 years ago, but they do not experience failures because of water tree degradation. Also, the degradation index of water treeing for these cables has not been established. Therefore, investigating results of residual breakdown voltage and water tree degradation of these cables will help us plan for cable replacement and determine water tree degradation diagnosis scheduling, and will be fundamental data for cable lifetime evaluation. In this study, the authors measured the ac breakdown voltages of dry‐cured and E‐E type 6.6‐kV XLPE cables removed after 18 to 25 years of operation and observed the water trees in their XLPE insulation. As a result, it was observed that breakdown voltages were larger than the maximum operating voltage (6.9 kV) and the ac voltage for the dielectric withstanding test (10.3 kV). Water trees were mainly bow‐tie water trees and their maximum length was approximately 1 mm. Although the number of measured cables was limited, the lifetime of this type of cable was estimated to be approximately 40 years, even experiencing water immersion.  相似文献   

20.
Water treeing is one of the factors leading to failure of medium voltage XLPE cables in long-term service. Increased moisture content inside oil-paper insulated cable is not desirable. To identify water tree degraded XLPE cables or oil-paper cables with high moisture content, diagnostic tests based on dielectric response (DR) measurement in time and frequency domain are used. Review of individual DR measurement techniques in the time and frequency domains indicates that measurement of one parameter in either domain may not be sufficient to reveal the status of the cable insulation. But a combination of several DR parameters can improve diagnostic results with respect to water trees present in XLPE cables or increased moisture content in oil-paper cables. DR measurement is a very useful tool that reveals average condition of cable systems. However, it is unlikely that DR measurement will detect few, but long water trees. In addition, DR cannot locate the defect or water tree site within the cable system. Combination of DR and partial discharge (PD) measurements can improve diagnostic results with respect to global and local defects. However, it is doubtful whether PD test can identify the presence of water trees inside a cable in a nondestructive manner. Further research is needed for more detailed conclusions regarding the status of a particular insulation and for predicting the remaining life of the insulation system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号