首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Four distinct cytochrome P-450 fractions (A1, A2, C1, and C2) have been separated and purified from the liver microsomes of phenobarbital-treated hybrid mice (B6D2F1/J). Fractions A2 and C2 were highly purified with specific contents of 16.5 and 17.5 nmol of cytochrome P-450/mg of protein, respectively, based on their amino acid compositions. The major hemeprotein bands of A2 and C2 have different minimum molecular weights (50,000 and 56,000, respectively) on polyacrylamide gels in the presence of sodium dodecyl sulfate. All four fractions with respect to their spectral and catalytic properties, thereby demonstrating that mouse liver microsomes from phenobarbital-treated hybrid mice contain at least four forms of cytochrome P-450.  相似文献   

2.
Cytochrome P-450scc (CYP XI A1) was purified from sheep adrenocortical mitochondria. The purified cytochrome was found to be homogeneous on SDS-polyacrylamide gel electrophoresis and to have a heme content of 20.8 nmol/mg of protein. Its amino acid composition and NH2-terminal amino acid sequence were determined, and compared with those of other known mammalian and fish cytochromes P-450scc. EPR spectra of the cytochrome P-450scc were measured for oxidized and NO-reduced forms in the presence or absence of cholesterol and/or adreno-ferredoxin. Spectral properties of these various forms were very similar to those of the bovine enzyme. Circular dichroism spectra of the purified sheep cytochrome P-450scc in the oxidized and dithionite-reduced forms, and of their complexed forms with cholesterol or adreno-ferredoxin were analyzed in the region from 200 to 700 nm. The difference CD spectrum of the oxidized cytochrome P-450scc complexed with adreno-ferredoxin minus the oxidized form suggests an increase in the high-spin form upon the addition of adreno-ferredoxin. This may suggest a direct influence of the adreno-ferredoxin binding to the heme moiety of the oxidized cytochrome P-450scc.  相似文献   

3.
Saccharomyces, human and two Arabidopsis (ATR1 and ATR2) NADPH-P-450 reductases were expressed in yeast, purified to homogeneity and used to raise antibodies. Among the P-450-reductases, ATR2 contrasted by its very low FMN affinity and required a thiol-reducing agent for efficient cofactor binding to the FMN-depleted enzyme. Analysis of reductase kinetic properties using artificial acceptors and different salt conditions suggested marked differences between reductases in their FAD and FMN environments and confirmed the unusual properties of the ATR2 FMN-binding domain. Courses of flavin reductions by NADPH were analysed by rapid kinetic studies. The human enzyme was characterized by a FAD reduction rate sixfold to tenfold slower than values for the three other reductases. Following the fast phase of reduction, expected accumulation of flavin semiquinone was observed for the human and ATR1 but not for ATR2 and the yeast reductases. Consistently, redox potential for the FMN semiquinone/reduced couple in the yeast enzyme was found to be more positive than the value for the FMN oxidized/semiquinone couple. This situation was reminiscent of similar inversion observed in bacterial P-450 BM3 reductase. Affinities of reductases for rabbit P-450 2B4 and supported monooxygenase activities in reconstituted systems highly depended on the reductase source. The human enzyme exhibited the highest affinity but supported the lowest kcat whereas the yeast reductase gave the best kcat but with the lowest affinity. ATR1 exhibited both high affinity and efficiency. No simple relation was found between reductase activities with artificial and natural (P-450) acceptors. Thus marked differences in kinetic and redox parameters between reductases dramatically affect their respective abilities to to support P-450 functions.  相似文献   

4.
beta-N-Acetylglucosaminidase (EC 3.2.1.30) was purified from the outer membrane of a marine bacterium, Alteromonas sp. strain O-7. The enzyme (GlcNAcase A) was purified by successive column chromatographies. The purified enzyme was found to be homogeneous on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The molecular mass and pI of GlcNAcase A were 92kDa and 4.9, respectively. The optimum pH and temperature were 6.0-7.0 and 45 degrees C, respectively. GlcNAcase A was stable up to 40 degrees C at pH 7.0, and hydrolyzed N-acetylchitooligosaccharides from dimer to hexamer. The amino-terminal 16 amino acid residues of GlcNAcase A were sequenced.  相似文献   

5.
We have previously reported the isolation of two cDNA clones, designated 2d-29 and 2d-35, which have identical open reading frames and code for a novel brain cytochrome P-450 (P-450) belonging to the CYP2D subfamily, and noted that the mRNA of clone 2d-35 seems to be expressed in the brain but not in the liver (1). Although the deduced amino acid sequence of these clones differs from that of the liver CYP2D4 by only 5 amino acids distributed in the C-terminal region, this new P-450 cDNA clone contained a unique 5'-extension, and we posit in this report by analysis of a genomic clone that this 5'-untranslated sequence is derived from a gene distinct from that of CYP2D4. Thus, this novel P-450 was named P-450 2D18 according to the recommended nomenclature (2). The expressibility of this cDNA was confirmed by in vitro translation using a reticulocyte system, and protein expression was performed using COS-M6 cells. Immunoblot analysis showed a cross-reacting band of the predicted size range with anti-P-450 2D6 antiserum, which was not seen in control cells. Furthermore, the CYP2D18-expressed COS cell lysate showed N-demethylation activity toward imipramine, whereas another brain P-450 CYP4F6-expressed COS cell lysate showed 10-hydroxylation activity. This is the first report that associates an individual P-450 isozyme in brain with a particular metabolic alteration of the antidepressant imipramine.  相似文献   

6.
A novel beta-glucosidase, which is inducible and capable of catalyzing the hydrolysis of sennosides, was purified from Bifidobacterium sp. strain SEN with Triton X-100 solubilization and DEAE-cellulose column chromatography, by which hydrolytic activities toward sennoside B, 4-methylumbelliferyl beta-glucoside (MUG), and p-nitrophenyl beta-glucoside (pNPG) were obtained together in the same eluted fractions. The activity was stable against detergents such as sodium dodecyl sulfate (SDS) and Triton X-100, but was denatured by SDS and beta-mercaptoethanal when heated. The final preparation was shown to be nearly homogeneous on SDS-polyacrylamide gel electrophoresis (PAGE) either after the enzyme was denatured or when it was not denatured. In the non-denaturing SDS-PAGE, a single protein band hydrolyzed MUG on the gel. In the denaturing SDS-PAGE, the subunit mass of the enzyme was estimated to be 110 kDa. The enzyme was optimally active at pH 6.0 for hydrolysis of sennoside B and MUG. Km values for sennoside B and MUG are 0.94 and 0.53 mM, respectively. The enzyme also catalyzed the hydrolysis of pNPG, amygdalin, geniposide and salicin. It was less active against methyl beta-glucoside and incapable of hydrolyzing cellobiose. The beta-glucosidase activity was inhibited by deoxynojirimycin and p-chloromercuribenzenesulfonic acid, but was less susceptible to several metals (FeSO4, ZnCl2, and CuSO4), and 5,5'-dithio-bis(2-nitrobenzoic acid).  相似文献   

7.
An alkaliphilic bacterium, Bacillus sp. strain K-1, produces extracellular xylanolytic enzymes such as xylanases, beta-xylosidase, arabinofuranosidase, and acetyl esterase when grown in xylan medium. One of the extracellular xylanases that is stable in an alkaline state was purified to homogeneity by affinity adsorption-desorption on insoluble xylan. The enzyme bound to insoluble xylan but not to crystalline cellulose. The molecular mass of the purified xylan-binding xylanase was estimated to be approximately 23 kDa. The enzyme was stable at alkaline pHs up to 12. The optimum temperature and optimum pH of the enzyme activity were 60 degrees C and 5.5, respectively. Metal ions such as Fe2+, Ca2+, and Mg2+ greatly increased the xylanase activity, whereas Mn2+ strongly inhibited it. We also demonstrated that the enzyme could hydrolyze the raw lignocellulosic substances effectively. The enzymatic products of xylan hydrolysis were a series of short-chain xylooligosaccharides, indicating that the enzyme was an endoxylanase.  相似文献   

8.
It is well established that most anticancer drugs also have mutagenic effects and require metabolic activation before exerting their mutagenic/antiblastic activity. Antitumoral compound effects strongly depend on the biochemical/physiological conditions of the tumoral cells, and especially on the activation of specific drugs metabolizing enzymes and on respiration. We examined the mitomycin C-induced mutagenic effects on the D7 strain of Saccharomyces cerevisiae and on its derivative mitochondrial mutant p degrees at different contents of glutathione and cytochrome P-450, molecules able to activate/detoxicate xenobiotics. The mutagenic activity of the drug was evaluated as frequency of mitotic gene conversion and reversion in different physiological conditions. The highest frequencies of reversion and especially of gene conversion were observed at the highest cytochrome P-450 contents in the D7 strain with a further increase at high glutathione level. In the respiratory-deficient strain, the highest frequency of convertants was shown at low glutathione level and lack of cytochrome P-450. These results suggest the relevance of mitochondrial functionality for the expression of genotoxic activity of this anticancer drug.  相似文献   

9.
A 4,103-bp long DNA fragment containing the structural gene of a gentisate 1,2-dioxygenase (EC 1.13.11.4), gtdA, from Sphingomonas sp. strain RW5 was cloned and sequenced. The gtdA gene encodes a 350-amino-acid polypeptide with a predicted size of 38.85 kDa. Comparison of the gtdA gene product with protein sequences in databases, including those of intradiol or extradiol ring-cleaving dioxygenases, revealed no significant homology except for a low similarity (27%) to the 1-hydroxy-2-naphthoate dioxygenase (phdI) of the phenanthrene degradation in Nocardioides sp. strain KP7 (T. Iwabuchi and S. Harayama, J. Bacteriol. 179:6488-6494, 1997). This gentisate 1,2-dioxygenase is thus a member of a new class of ring-cleaving dioxygenases. The gene was subcloned and hyperexpressed in E. coli. The resulting product was purified to homogeneity and partially characterized. Under denaturing conditions, the polypeptide exhibited an approximate size of 38.5 kDa and migrated on gel filtration as a species with a molecular mass of 177 kDa. The enzyme thus appears to be a homotetrameric protein. The purified enzyme stoichiometrically converted gentisate to maleylpyruvate, which was identified by gas chromatography-mass spectrometry analysis as its methyl ester. Values of affinity constants (Km) and specificity constants (Kcat/Km) of the enzyme were determined to be 15 microM and 511 s-1 M-1 x 10(4) for gentisate and 754 microM and 20 s-1 M-1 x 10(4) for 3, 6-dichlorogentisate. Three further open reading frames (ORFs) were found downstream of gtdA. The deduced amino acid sequence of ORF 2 showed homology to several isomerases and carboxylases, and those of ORFs 3 and 4 exhibited significant homology to enzymes of the glutathione isomerase superfamily and glutathione reductase superfamily, respectively.  相似文献   

10.
The final step in the biosynthesis of methymycin, neomethymycin, and picromycin is an hydroxylation, shown to be carried out by the cytochrome P-450 monooxygenase, PicK. Direct comparison of the relative Kcat/K(m) values for the two substrates, YC-17 and narbomycin, showed a threefold rate preference of picK for narbomycin.  相似文献   

11.
Several genes in the trichothecene biosynthetic pathway of Fusarium sporotrichioides have been shown to reside in a gene cluster. Sequence analysis of a cloned DNA fragment located 3.8 kb downstream from TRI5 has led to the identification of the TRI11 gene. The nucleotide sequence of TRI11 predicts a polypeptide of 492 residues (Mr = 55,579) with significant similarity to members of the cytochrome P-450 superfamily. TRI11 is most similar to several fungal cytochromes P-450 (23 to 27% identity) but is sufficiently distinct to define a new cytochrome P-450 gene family, designated CYP65A1. Disruption of TRI11 results in an altered trichothecene production phenotype characterized by the accumulation of isotrichodermin, a trichothecene pathway intermediate. The evidence suggests that TRI11 encodes a C-15 hydroxylase involved in trichothecene biosynthesis.  相似文献   

12.
In the present study, we determined the stereoselective epoxidation of arachidonic acid by cytochrome P-450 (P-450) 2CAA and P-450 2C2, two arachidonic acid epoxygenases found in rabbit renal cortex, by chiral normal-phase high-performance liquid chromatography (HPLC)-analysis. Purified P-450 2CAA reconstituted with P-450 oxidoreductase, lipid and cytochrome b5 or microsomes isolated from COS-1 cells expressing P-450 2C2 were incubated in the presence of [1-14C]arachidonic acid. The epoxide metabolites 14,15- and 11,12-epoxyeicosatrienoic acids (EETs) were purified by reverse-phase HPLC and derivatized to methyl (14,15-EET) and pentafluorobenzyl (11,12-EET) esters. Enantiomers of 14,15-EET-methyl ester and 11,12-EET-pentafluorobenzyl ester were resolved on Chiralcel OB and OD columns, respectively, with a mobile phase of 0.15% 2-propanol in n-hexane. P-450 2CAA and P-450 2C2 produce 11,12- and 14,15-EETs in distinct ratios but are equally stereoselective at the 11,12-position. P-450 2CAA produced 11(S), 12(R)-EET with 63% stereoselectivity, and P-450 2C2 produced the same enantiomer with 61% stereoselectivity. Both enzymes are also stereoselective at the 14,15- position, preferentially producing the 14(R), 15(S)-EET. P-450 2CAA produces this enantiomer with 72% selectivity, and P-450 2C2 produces it with 62% selectivity. The results of this study indicate that P-450 2CAA and P-450 2C2 are not only regioselective but also exhibit a high degree of stereoselectivity.  相似文献   

13.
The ferredoxin component (ferredoxinBPH) of biphenyl 2,3-dioxygenase was purified to homogeneity from crude cell extract of Pseudomonas sp strain LB400 using ion exchange, hydrophobic interaction and gel filtration column chromatography. The protein was a monomer with a molecular weight of 15,000 and contained 2 gram-atoms each of iron and acid-labile sulfur. Ultraviolet-visible absorbance spectroscopy showed peaks at 325 nm and 460 nm with a broad shoulder around 575 nm. The spectrum was partially bleached in the visible region upon reduction by reductaseBPH with NADPH as the source of electrons. Electron paramagnetic resonance spectrometry showed no signals for the oxidized protein. Upon reduction with sodium dithionite, signals with gx = 1.82, gy = 1.92 and gz = 2.02 were detected. These results indicate that the protein contains a Rieske-type (2Fe-2S) iron-sulfur center. FerredoxinBPH was required for the oxidation of biphenyl by the terminal oxygenase component of the enzyme and is probably involved in the transfer of reducing equivalents from reductaseBPH to the terminal oxygenase during catalysis.  相似文献   

14.
NADPH-cytochrome c (cytochrome P-450) reductase (EC 1.6.2.4) has been purified to homogeneity, as judged by sodium dodecyl sulfate disc gel electrophoresis, from detergent-solubilized rat and pig liver microsomes using an affinity chromatography procedure. Treatment of microsomes with a polyethoxynonylphenyl ether plus either cholate or deoxycholate and subsequent batch-wise DEAE-cellulose chromatography followed by biospecific affinity chromatography on Sepharose 4B-bound N6-(6-aminohexyl)-adenosine 2',5'-bisphosphate (2'5'-ADP-Sepharose 4B) result in a greater than 30% yield of purified reductase from microsomes. The enzyme contains 1 mol each of FAD and FMN and exhibits a molecular weight of 78,000 g mol-1 estimated by comparison with protein standards on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The turnover numbers calculated on the basis of flavin are 1360 min-1 and 1490 min-1 at 25 degrees for the pig and rat liver enzymes, respectively. Titration of these purified preparations aerobically with both NADPH and potassium ferricyanide demonstrated unequivocally that the air-stable, reduced form of NADPH-cytochrome c (P-450) reductase contains 2 electron equivalents, confirming recent results obtained by Masters et al. (Masters, B. S. S., Prough, R. A., and Kamin, H. (1975) Biochemistry 14, 607-613) for the proteolytically solubilized enzyme. In addition, these preparations are capable of reconstituting benzphetamine N-demethylation activity in the presence of partially purified cytochrome P-450 and dilauroylphosphatidylcholine, as measured by formaldehyde formation from benzphetamine.  相似文献   

15.
OBJECTIVE: To examine the relationship of skill, as represented by NCAA division level, to anterior cruciate ligament rupture in collegiate men's and women's basketball and soccer players. DESIGN: Randomized, retrospective. PARTICIPANTS: Women's and men's basketball and soccer players at NCAA Division I, II, and III institutions. MAIN OUTCOME MEASURE: Athletes with or without ACL injury. RESULTS: There was no relationship of ACL injury rate to NCAA division level in men's or women's basketball or soccer. CONCLUSIONS: There are many different variables that contribute to a player's skill level. Although these variables may relate to ACL injury and may be responsible for the differential in injury rate between men and women, skill level as represented by collegiate division does not relate to ACL injury. When considering possible etiologies of the differential in ACL injury rates between men and women, the use of the term "skill" should be avoided, and more specific terms used.  相似文献   

16.
17.
A new enzyme, N-alkylglycine oxidase, was isolated from a soil mold, Cladosporium sp. G-10. This protein, which was purified to near homogeneity by ammonium sulfate precipitation followed by successive column chromatography on phenyl-Sepharose, DEAE-Sepharose and Sephadex G-200, was a single polypeptide with a molecular mass of 52,000. In the presence of O2 and H2O, this enzyme acted on some N-alkylglycine derivatives, such as N epsilon-carboxymethyllysine, N-carboxymethyl-6-aminocaproic acid, sarcosine and N-ethylglycine, and produced corresponding N-alkylamine, glyoxylic acid and H2O2. This enzyme had optimum activity at 30 degrees C, pH 8-10, and was most inhibited by ZnSO4, pCMB, iodoacetic acid, and SDS.  相似文献   

18.
19.
Rabbit liver microsomal cytochrome b5 was allowed to react with tetranitromethane. Up to three tyrosine residues in each cytochrome b5 molecule were found to be accessible to the nitrating agent. Co-modification of tryptophan and histidine residues could be disregarded. CD-spectral measurements disproved gross changes in cytochrome b5 structure as a consequence of derivatization. Introduction of 1.6 nitro groups/polypeptide chain resulted in a fivefold increase in binding affinity for cytochrome P-450 2B4 (P-450 2B4), whereas spectral interaction with cytochrome c remained unaffected. Furthermore, the capacity of nitrated cytochrome b5 to shift the spin equilibrium to the high-spin conformer of P-4502B4 was diminished by 44% compared with the control. This corresponded with the partial disruption of NADH-dependent electron flow to ferric P-450 2B4. Changes in the redox potential of cytochrome b5 could be discounted as being responsible for this effect. The overall oxidative turnover of 4-nitroanisole did not respond to cytochrome b5 modification. MS analysis and sequencing of peptide fragments produced by tryptic digestion of modified cytochrome b5 permitted the detection of three nitrated tyrosine residues located at positions 11, 34 and 129. Derivatization of cytochrome b5 in the presence of a protective amount of P-450 2B4 provided evidence of the involvement of Tyr34 and Tyr129 in complexation of the two hemoproteins. It is proposed that Tyr129 might control docking of cytochrome b5 to P-450 2B4, whereas Tyr34 could be of functional importance in electron transfer.  相似文献   

20.
Two forms of cytochrome b5 were purified from detergent solubilized sheep lung microsomes by three successive DEAE-cellulose, Sephadex G-100 and Sephadex G-200 column chromatographies. The specific contents of cytochromes b5-I and b5-II were determined to be 45.4 and 43.8 nmol b5/mg protein, which represented up to 567 and 547-fold purification compared with that of the lung microsomes. The most striking difference between b5-I and b5-II was observed in their elution pattern from the third DEAE-cellulose column. Cytochromes gave one protein band with a Mr of 16400 +/- 500 on SDS-PAGE. Both forms of reduced b5 showed a major peak at 423 nm while reduced b5-I had two minor peaks at 527 and 556 and reduced b5-II gave two well-defined peaks at 526 and 555 nm. The ability of the purified b5-I and b5-II fractions to transfer the electrons from NADH-cytochrome b5 reductase to cytochrome c was investigated. Apparent Km, 0.055 microM, of b5-II was found to be 38% lower than that of b5-I. In addition, cytochrome b5-I was found to be more sensitive to heat treatment than b5-II when cytochromes were subjected to 62 degrees C for varying periods of time and the coupling of b5 reduction to cytochrome c reduction was determined. These results may indicate that two forms may exist in lung endoplasmic reticulum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号