首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Vectors based on herpes simplex virus type 1 (HSV-1) show promise for gene transfer into mammalian cells because of their wide host range, efficient infection and ability to deliver genes to nondividing cells. Defective HSV-1 vectors, or amplicons, are plasmid vectors which are unable to propagate on their own but contain specific HSV-1 sequences that, in the presence of helper virus, support DNA replication and subsequent packaging into virus particles. We compared three replication-incompetent HSV-1 mutants (KOS strain 5dl1.2, strain 17 D30EBA, KOS strain d120) as the helper virus for packaging the prototype defective HSV-1 vector, pHSVlac, which uses the HSV-1 immediate-early (1E) 4/5 promoter to regulate expression of the Escherichia coli lacZ gene. Use of 5dl1.2, which contains a deletion in the IE 2 gene, consistently produced virus stocks that contained a high level of vector, undetectable levels of wild-type HSV-1 and a ratio of vector to helper greater than 1. Virus stocks prepared using 5dl1.2 were superior to those prepared using helper viruses that harbor a deletion in the IE 3 gene, either D30EBA or dl20, and supported more efficient gene transfer than possible with previously published procedures. Lactate dehydrogenase efflux assays in rat cortical cultures showed that 5dl1.2 was no more cytotoxic than either D30EBA or dl20, despite the expression of more viral genes. Rat cortical cultures infected with pHSVlac packaged with either 5dl1.2 or D30EBA were used to quantify the stability of vector expression. Our results show a decrease in the number of cells with detectable levels of beta-galactosidase to 30% of peak levels after one week, irrespective of the helper virus used. However, simultaneous superinfection with 5dl1.2, but not with either D30EBA or dl20, produced a transient increase in the number of cells expressing beta-galactosidase. Superinfection with 5dl1.2 at 9 days after gene transfer increased the number of cells expressing detectable beta-galactosidase back to peak levels, most probably because of reactivation of the IE 4/5 promoter in pHSVlac. These results thus provide the first quantitative demonstration of long-term persistence of defective HSV-1 vectors in neurons.  相似文献   

3.
The genome of herpes simplex virus type 1 (HSV-1) strain 17+ contains ten HindIII and four XbaI restriction endonuclease (RE) cleavage sites. We have previously reported the isolation of an HSV-1 mutant, 1702, devoid of all the four XbaI sites. Here we report the isolation of HSV-1 mutants lacking seven of the HindIII sites plus the four XbaI sites. In order to destroy the various HindIII sites, mutagenic oligonucleotides were synthesized and introduced in to the plasmids containing HSV-1 restriction endonuclease fragments spanning these HindIII sites. All the seven HindIII sites were removed by site-directed mutagenesis. Two methods of site-directed mutagenesis were used: 1) the HindIII site at 0.91 map coordinates (mc) of HSV-1 strain 17+ genome was deleted using a gapped, heteroduplex molecule of DNA, and 2) uracil-rich single-stranded DNA templates were used in in vitro mutagenesis reactions to remove the HindIII sites at 0.08, 0.1, two at 0.18, 0.26 and 0.64 mc. These HindIII site deletions were then marker transferred back in to the 1702 genome to generate virus mutants devoid of specific HindIII sites. No other deletions and/or insertions were observed within the viral genomes of mutant viruses as allowed by restriction endonuclease analysis of their 32P-labelled DNAs. All the HindIII site-deletion mutants, 1721-1733, showed comparable growth properties and polypeptide profiles to those of the parental 17+ and 1702 viruses.  相似文献   

4.
5.
Herpes simplex virus type 1 (HSV-1) mutants defective in immediate-early (IE) gene expression do not readily enter productive replication after infection of tissue culture cells. Instead, their genomes are retained in a quiescent, nonreplicating state in which the production of viral gene products cannot be detected. To investigate the block to virus replication, we used the HSV-1 triple mutant in1820K, which, under appropriate conditions, is effectively devoid of the transactivators VP16 (a virion protein), ICP0, and ICP4 (both IE proteins). Promoters for the HSV-1 IE ICP0 gene or the human cytomegalovirus (HCMV) major IE gene, cloned upstream of the Escherichia coli lacZ coding sequences, were introduced into the in1820K genome. The regulation of these promoters and of the endogenous HSV-1 IE promoters was investigated upon conversion of the virus to a quiescent state. Within 24 h of infection, the ICP0 promoter became much less sensitive to transactivation by VP16 whereas the same element, when used to transform Vero cells, retained its responsiveness. The HCMV IE promoter, which is not activated by VP16, also became less sensitive to the HCMV functional homolog of VP16. Both elements remained available for transactivation by HSV-1 IE proteins at 24 h postinfection, showing that the in1820K genome was not irreversibly inactivated. The promoters controlling the HSV-1 ICP4, ICP22, and ICP27 genes also became essentially unresponsive to transactivation by VP16. The ICP0 promoter was induced when hexamethylene bisacetamide was added to cultures at the time of infection, but the response to this agent was also lost by 24 h after infection. Therefore, promoter elements within the HSV-1 genome are actively repressed in the absence of IE gene expression, and repression is not restricted specifically to HSV-1 IE promoters.  相似文献   

6.
7.
PURPOSE: Selective gene expression in response to tumor hypoxia may provide new avenues, not only for radiotherapy and chemotherapy, but also for gene therapy. In this study, we have assessed the extent of hypoxia responsiveness of various DNA constructs by the luciferase assay to help design vectors suitable for cancer therapy. MATERIALS AND METHODS: Reporter plasmids were constructed with fragments of the human vascular endothelial growth factor (VEGF) and the erythropoietin (Epo) genes encompassing the putative hypoxia-responsive elements (HRE) and the pGL3 promoter vector. Test plasmids and the control pRL-CMV plasmid were cotransfected into tumor cells by the calcium phosphate method. After 6 h hypoxic treatment, the reporter assay was performed. RESULTS: The construct pGL3/VEGF containing the 385 bp fragment of the 5' flanking region in human VEGF gene showed significant increases in luciferase activity in response to hypoxia. The hypoxic/aerobic ratios were about 3-4, and 8-12 for murine and human tumor cells, respectively. Despite the very high degree of conservation among the HREs of mammalian VEGF genes, murine cells showed lower responsiveness than human cells. We next tested the construct pGL3/Epo containing the 150 bp fragment of the 3' flanking region in the Epo gene. Luciferase activity of pGL3/Epo was increased with hypoxia only in human cell lines. The insertion of 5 copies of the 35-bp fragments derived from the VEGF HREs and 32 bp of the E1b minimal promoter resulted in maximal enhancement of hypoxia responsiveness. CONCLUSIONS: The constructs with VEGF or Epo fragments containing HRE may be useful for inducing specific gene expression in hypoxic cells. Especially, the application of multiple copies of the HREs and an E1b minimal promoter appears to have the advantage of great improvement in hypoxia responsiveness.  相似文献   

8.
Human herpesvirus 8 (HHV-8) is a newly discovered virus closely associated with Kaposi's sarcoma and primary effusion lymphomas. When they occur in patients with AIDS, these B-cell lymphomas frequently harbor another human herpesvirus, Epstein-Barr virus (EBV). To determine the molecular mechanisms of the regulation of early gene expression by the immediate-early gene products of HHV-8 and to assess possible molecular interactions between HHV-8 and EBV, we studied the regulation of the HHV-8 thymidine kinase (TK) promoter in cell lines harboring either or both viruses. The constitutive chloramphenicol acetyltransferase (CAT) activity of the TK promoter was low in all six cell lines tested. A putative immediate-early gene product of HHV-8 ORF50, which is a homolog of EBV BRLF1, was cloned into an expression vector and tested for its transactivating capacity. In the presence of 12-O-tetradecanoyl-phorbol-13-acetate (TPA), the CAT activity of the TK promoter was increased 7- to 720-fold by cotransfection with the ORF50 clone in EBV-producing cell lines (Ramos/AW, P3HR-1, and BC-1) but not in EBV-negative cell lines (BCBL-1 and Ramos), nor in the latently EBV-infected cell line Raji. The TK promoter contains three consensus SP1- and two AP1-binding sites. In electrophoretic mobility shift assays, the cellular factor SP1, but not AP1, was found to bind specifically to the TK promoter. To determine whether the increased CAT activity resulted from the interaction of SP1 with the ORF50 gene product, we introduced mutations into two SP1-binding sites. Both mutated SP1 sites had reduced SP1-binding activity and greatly decreased TK promoter responsiveness to ORF50 transactivation, suggesting that upregulation of TK promoter by ORF50 is SP1 dependent.  相似文献   

9.
10.
Previous studies have suggested that the U(L)17 gene of herpes simplex virus type 1 (HSV-1) is essential for virus replication. In this study, viral mutants incorporating either a lacZ expression cassette in place of 1,490 bp of the 2,109-bp U(L)17 open reading frame [HSV-1(deltaU(L)17)] or a DNA oligomer containing an in-frame stop codon inserted 778 bp from the 5' end of the U(L)17 open reading frame [HSV-1(U(L)17-stop)] were plaque purified on engineered cell lines containing the U(L)17 gene. A virus derived from HSV-1(U(L)17-stop) but containing a restored U(L)17 gene was also constructed and was designated HSV-1(U(L)17-restored). The latter virus formed plaques and cleaved genomic viral DNA in a manner indistinguishable from wild-type virus. Neither HSV-1(deltaU(L)17) nor HSV-1(U(L)17-stop) formed plaques or produced infectious progeny when propagated on noncomplementing Vero cells. Furthermore, genomic end-specific restriction fragments were not detected in DNA purified from noncomplementing cells infected with HSV-1(deltaU(L)17) or HSV-1(U(L)17-stop), whereas end-specific fragments were readily detected when the viruses were propagated on complementing cells. Electron micrographs of thin sections of cells infected with HSV-1(deltaU(L)17) or HSV-1(U(L)17-stop) illustrated that empty capsids accumulated in the nuclei of Vero cells, whereas DNA-containing capsids accumulated in the nuclei of complementing cells and enveloped virions were found in the cytoplasm and extracellular space. Additionally, protein profiles of capsids purified from cells infected with HSV-1(deltaU(L)17) compared to wild-type virus show no detectable differences. These data indicate that the U(L)17 gene is essential for virus replication and is required for cleavage and packaging of viral DNA. To characterize the U(L)17 gene product, an anti-U(L)17 rabbit polyclonal antiserum was produced. The antiserum reacted strongly with a major protein of apparent Mr 77,000 and weakly with a protein of apparent Mr 72,000 in wild-type infected cell lysates and in virions. Bands of similar sizes were also detected in electrophoretically separated tegument fractions of virions and light particles and yielded tryptic peptides of masses characteristic of the predicted U(L)17 protein. We therefore conclude that the U(L)17 gene products are associated with the virion tegument and note that they are the first tegument-associated proteins shown to be required for cleavage and packaging of viral DNA.  相似文献   

11.
We have previously reported that the equine herpesvirus 1 (EHV-1) XbaI G restriction fragment (nucleotides 1436 to 7943 relative to the left terminus of the EHV-1 genome [Kentucky A strain]) is required in combination with the EHV-1 immediate-early (IE) gene to achieve significant activation of two representative EHV-1 late promoter-chloramphenicol acetyltransferase (CAT) recombinants in transient expression assays. In this report, we demonstrate that the XbaI G-encoded UL3 gene (an ICP27 homolog) provides a trans-acting factor which acts (in combination with the EHV-1 IE gene product) to increase reporter gene expression directed by an EHV-1 late promoter-CAT recombinant plasmid. We show that cloned copies of UL3 can successfully substitute for the XbaI G fragment in CAT assays and that stop codon insertion within the UL3 open reading frame inhibits the ability of UL3 to activate reporter gene expression in trans.  相似文献   

12.
A set of 18 plasmid subclones of the Autographa californica nuclear polyhedrosis virus genome, each containing an identified late expression factor gene (lef), supports expression from a late viral promoter in transient expression assays in the SF-21 cell line derived from Spodoptera frugiperda. We have constructed a further set of plasmids in which each lef open reading frame (ORF) is controlled by the Drosophila melanogaster heat shock protein 70 (hsp70) promoter and epitope tagged. Failure of this set of plasmids to support transient late gene expression, and the inability of the p47 ORF to replace the p47-containing plasmid supplied in the lef plasmid library, led to the identification of a 19th late expression factor gene (lef-12) located adjacent to the p47 gene. The sequence of lef-12 is predicted to encode a protein of 21 kDa with no homology to any previously identified protein. The set of 19 hsp70-controlled lef ORFs (HSEpiHis lef library) supports transient expression from a late viral promoter. lef-12 did not affect expression from an early baculovirus promoter. In TN-368 cells, which are also permissive for virus replication, lef-12 provided a stimulatory effect but did not appear to be essential.  相似文献   

13.
14.
Herpes simplex virus type 1 (HSV-1)-based amplicon vectors contain only approximately 1% of the 152-kb HSV-1 genome, and consequently, replication and packaging into virions depends on helper functions. These helper functions have been provided conventionally by a helper virus, usually a replication-defective mutant of HSV-1, or more recently, by a set of five cosmids that overlap and represent the genome of HSV-1 deleted for DNA cleavage/packaging signals (pac). In the absence of pac signals, potential HSV-1 genomes that are reconstituted from the cosmids via homologous recombination are not packageable. The resulting amplicon stocks are, therefore, virtually free of contaminating helper virus. To simplify this packing system, the HSV-1 genome was cloned and maintained stably as a single-copy, F plasmid-based bacterial artificial chromosome in E. coli. Such a plasmid containing the HSV-1 genome deleted for the pac signals (fHSV delta pac) did not generate replication-competent progeny virus on transfection into mammalian cells, but rather, it was able to support the packaging of cotransfected amplicon DNA that contained a functional pac signal. The resulting amplicon vector stocks had titers of up to 10(7) transducing units per milliliter of culture medium and efficiently transduced neural cells in the rat brain, as well as hepatocytes in the rat. The capacity of generating infectious and replication-competent HSV-1 progeny following transfection into mammalian cells was restored after insertion of a pac signal into fHSV delta pac.  相似文献   

15.
Several vaccines have been investigated experimentally in the herpes simplex virus type 2 (HSV-2) model system. While it is believed that CD4(+)-T-cell responses are important for protection in general, the correlates of protection from HSV-2 infection are still under investigation. Recently, the use of molecular adjuvants to drive vaccine responses induced by DNA vaccines has been reported in a number of experimental systems. We sought to take advantage of this immunization model to gain insight into the correlates of immune protection in the HSV-2 mouse model system and to further explore DNA vaccine technology. To investigate whether the Th1- or Th2-type immune responses are more important for protection from HSV-2 infection, we codelivered the DNA expression construct encoding the HSV-2 gD protein with the gene plasmids encoding the Th1-type (interleukin-2 [IL-2], IL-12, IL-15, and IL-18) and Th2-type (IL-4 and IL-10) cytokines in an effort to drive immunity induced by vaccination. We then analyzed the modulatory effects of the vaccine on the resulting immune phenotype and on the mortality and the morbidity of the immunized animals following a lethal challenge with HSV-2. We observed that Th1 cytokine gene coadministration not only enhanced the survival rate but also reduced the frequency and severity of herpetic lesions following intravaginal HSV challenge. On the other hand, coinjection with Th2 cytokine genes increased the rate of mortality and morbidity of the challenged mice. Moreover, of the Th1-type cytokine genes tested, IL-12 was a particularly potent adjuvant for the gD DNA vaccination.  相似文献   

16.
Integration of transgenic DNA into the plant genome was investigated in 13 transgenic oat (Avena sativa L.) lines produced using microprojectile bombardment with one or two cotransformed plasmids. In all transformation events, the transgenic DNA integrated into the plant genome consisted of intact transgene copies that were accompanied by multiple, rearranged, and/or truncated transgene fragments. All fragments of transgenic DNA cosegregated, indicating that they were integrated at single gene loci. Analysis of the structure of the transgenic loci indicated that the transgenic DNA was interspersed by the host genomic DNA. The number of insertions of transgenic DNA within the transgene loci varied from 2 to 12 among the 13 lines. Restriction endonucleases that do not cleave the introduced plasmids produced restriction fragments ranging from 3.6 to about 60 kb in length hybridizing to a probe comprising the introduced plasmids. Although the size of the interspersing host DNA within the transgene locus is unknown, the sizes of the transgene-hybridizing restriction fragments indicated that the entire transgene locus must be at least from 35-280 kb. The observation that all transgenic lines analyzed exhibited genomic interspersion of multiple clustered transgenes suggests a predominating integration mechanism. We propose that transgene integration at multiple clustered DNA replication forks could account for the observed interspersion of transgenic DNA with host genomic DNA within transgenic loci.  相似文献   

17.
Sequence analysis of the Lymantria dispar multicapsid nucleopolyhedrovirus (LdMNPV) genome identified an open reading frame (ORF) encoding a 548-amino-acid (62-kDa) protein that showed 35% amino acid sequence identity with vaccinia virus ATP-dependent DNA ligase. Ligase homologs have not been reported from other baculoviruses. The ligase ORF was cloned and expressed as an N-terminal histidine-tagged fusion protein. Incubation of the purified protein with [alpha-32P]ATP resulted in formation of a covalent enzyme-adenylate intermediate which ran as a 62-kDa labeled band on a sodium dodecyl sulfate-polyacrylamide gel. Loss of the radiolabeled band occurred upon incubation of the intermediate with pyrophosphate, poly(dA) . poly(dT)12-18, or poly(rA) . poly(dT)12-18, characteristics of a DNA ligase II or III. The protein was able to ligate a double-stranded synthetic DNA substrate containing a single nick and inefficiently ligated a 1-nucleotide (nt) gap but did not ligate a 2-nt gap. It was able to ligate short, complementary overhangs but not blunt-ended double-stranded DNA. In a transient DNA replication assay employing six plasmids containing the LdMNPV homologs of the essential baculovirus replication genes, a plasmid containing the DNA ligase gene was neither essential nor stimulatory. All of these results are consistent with the activity of type III DNA ligases, which have been implicated in DNA repair and recombination.  相似文献   

18.
19.
20.
The large subunit of herpes simplex virus (HSV) ribonucleotide reductase (RR), RR1, contains a unique amino-terminal domain which has serine/threonine protein kinase (PK) activity. To examine the role of the PK activity in virus replication, we studied an HSV type 2 (HSV-2) mutant with a deletion in the RR1 PK domain (ICP10DeltaPK). ICP10DeltaPK expressed a 95-kDa RR1 protein (p95) which was PK negative but retained the ability to complex with the small RR subunit, RR2. Its RR activity was similar to that of HSV-2. In dividing cells, onset of virus growth was delayed, with replication initiating at 10 to 15 h postinfection, depending on the multiplicity of infection. In addition to the delayed growth onset, virus replication was significantly impaired (1,000-fold lower titers) in nondividing cells, and plaque-forming ability was severely compromised. The RR1 protein expressed by a revertant virus [HSV-2(R)] was structurally and functionally similar to the wild-type protein, and the virus had wild-type growth and plaque-forming properties. The growth of the ICP10DeltaPK virus and its plaque-forming potential were restored to wild-type levels in cells that constitutively express ICP10. Immediate-early (IE) genes for ICP4, ICP27, and ICP22 were not expressed in Vero cells infected with ICP10DeltaPK early in infection or in the presence of cycloheximide, and the levels of ICP0 and p95 were significantly (three- to sevenfold) lower than those in HSV-2- or HSV-2(R)-infected cells. IE gene expression was similar to that of the wild-type virus in cells that constitutively express ICP10. The data indicate that ICP10 PK is required for early expression of the viral regulatory IE genes and, consequently, for timely initiation of the protein cascade and HSV-2 growth in cultured cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号