首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
黄良  王宇红 《计算机仿真》2012,(8):101-104,108
研究大柔性飞机降落中震动的优化控制问题。大柔性飞机在起落过程中,柔性结构决定了缓冲支撑点结构刚度低、内阻小、间距较大,降落时会产生较大震动,引起建立的飞机抗震模型阶数较高。传统的飞机震动控制方法都是以建立的抗震动力学模型为基础的,一旦模型阶数较高,将产生飞机缓冲系数过小,从而降低抗震模型的精度。提出一种独立模态抗震法直接针对大柔性飞机的高阶动力模型设计,采用柔性压电结构振动模态控制技术,准确地设计大柔性飞机抗震控制器的控制律,可以防止控制溢出被有效抑制,减小飞机降落的振幅幅度。仿真结果表明:改进方法对大柔性飞机的振动模态进行独立控制,起落过程振动抑制效果非常显著,降低了震动强度。  相似文献   

2.
压电柔性机械臂的主动振动控制研究   总被引:4,自引:0,他引:4  
邱志成  谢存禧  张洪华  吴宏鑫 《机器人》2004,26(1):45-48,73
针对柔性机械臂的振动问题,采用压电智能结构作为敏感器和驱动器进行主动控制.首先建立柔性机械臂的实验装置,其次对设计的柔性机械臂系统进行辨识研究,得到系统的前二阶模态频率,再次采用PD控制和PPF控制算法对柔性机械臂进行主动振动控制.实验结果表明,采用压电智能结构可以抑制柔性机械臂的振动,效果明显.  相似文献   

3.
本文对压电梁、板结构振动主动控制进行了研究,分别建立了压电悬臂梁的耦合动力学方程以及Kirchhoff假设下矩形压电薄板的耦合动力学方程,通过采用独立模态空间控制法,实现了对压电智能结构前两阶模态的主动振动控制.为提高主动控制的抑振效果,通过仿真实例分析了压电执行器在梁上的不同布局对于主动控制抑振效果的影响,得到了压电执行器粘附于悬臂梁上的最佳布局.最后实验验证了压电悬臂梁在自由振动以及模态共振下压电执行器对于悬臂梁响应控制的可行性和有效性.  相似文献   

4.
当机械臂的质量很轻,尤其是空间应用场合,机器人系统将受到高度柔性限制并且不可避免地产生机械振动.本文为了证实提出的控制不期望残余振动的方法,设计并建立了柔性机器人实验平台.控制方案采用交流伺服电机通过谐波齿轮减速器驱动柔性机械臂,利用粘贴在柔性臂上的压电陶瓷片(PZT)作为传感器来检测柔性臂的振动.对由于环境激励,尤其是在电机转动(机动)时由于电机力矩产生的振动,采用了几种主动振动控制器包括模态PD控制,软变结构控制(VSC)和增益选择变结构方法,进行柔性臂的振动主动控制实验研究.通过实验比较研究,结果表明采用的控制方法可以快速抑制柔性结构的振动,采用的控制方法是有效的.  相似文献   

5.
为抑制空间柔性桁架结构的低频振动,采用压电杆件进行优化配置实现桁架结构的振动主动控制;建立了空间桁架结构主动压电杆件的机电耦合模型,利用ANSYS前处理功能编制了压电桁架的机电耦合有限元程序;将可控性度量指标与逐步消减法相结合,实现了空间桁架结构主动杆件的优化配置;对结构进行初始位移扰动、正弦激励以及随机激励,并采用最优模态控制算法进行振动抑制仿真分析,对上述方法进行验证且建立振动控制评价指标进行评价;结果表明将可控性度量指标与逐步消减法相结合的方法可有效抑制空间柔性桁架结构的振动。  相似文献   

6.
利用压电材料的正逆压电效应,实现了移动质量激励悬臂梁振动主动控制;建立了压电元传感方程和作动方程,进一步将其转化为状态空间模型中的状态方程和输出方程;设计了基于线性二次型最优控制(LQR)策略的振动主动控制器,以TMS320VC33 DSP芯片为核心组建了相应的硬件电路。实验结果表明:采用压电自感作动器可很好地抑制移动质量激励引起的悬臂梁振动。  相似文献   

7.
针对乘用车结构振动和噪声问题,对嵌入压电传感器和致动器的汽车顶棚进行了振动主动控制研究;对压电平板进行数学建模,通过有限元分析某国产乘用车车身顶棚模态振型,合理选择传感器和致动器增益,作为最小化振动响应这一目标函数的参数;控制器的设计应用了独立模态空间控制法,将压电传感器和致动器及独立模态空间控制法(IMSC)组成的控制系统应用于汽车顶棚振动主动控制,实验结果表明,即使当控制回路被电磁噪声干扰时,控制前后系统的振级相差可达到30%左右,取得了有效的振动抑制效果。  相似文献   

8.
压电复合梁高阶有限元模型与主动振动控制研究   总被引:2,自引:1,他引:1  
大型柔性空间结构的振动控制问题引起了广泛的关注.压电材料以其低质量、宽频带和适应性强等特点,非常适合于柔性空间结构的振动控制.本文针对上下表面粘贴有分布式压电传感器和作动器的智能层梁结构,提出了一种考虑压电材料对结构质量、刚度影响的高阶有限元模型.考虑到空间结构可能承受较大的热载荷,在模型中计及了压电材料的热电耦合效应.采用常增益负反馈控制方法、常增益速度负反馈控制方法、Lyapunov反馈控制方法和线性二次型调节器方法(LQR)设计主动控制器,实现了智能层梁结构脉冲激励下的振动主动控制.仿真结果表明,LQR方法更能有效的实现结构振动控制,并且具有更低的作动器峰值电压,但不能消除热载荷引起的结构静变形.  相似文献   

9.
航天器上太阳帆板这种悬臂外伸薄板结构的挠性附件,存在有扰动条件下引起的振动,可采用压电智能结构对悬臂板进行主动振动控制。文章对设计的挠性悬臂板系统进行系统辨识,得到板系统的前三阶模态频率及阻尼比,并采用PD控制和PPF控制算法对板的前三阶模态(包括弯曲模态和扭转模态)进行主动振动控制。试验结果表明,采用压电智能结构可以抑制挠性悬臂板的振动.效果明显。  相似文献   

10.
针对压电加筋壁板结构多模态主动控制时存在振动模型和外界干扰难以确定等问题, 提出一种不依赖结构数学模型的多模态自抗扰振动控制方法. 首先,采用多回路的扩张状态观测器实时估计其他模态的输出叠加、输入耦合、高次谐波以及外界激励等组成的集总干扰, 并将估计值通过前馈补偿的方式消除干扰对整个控制系统的影响. 然后, 针对每个控制模态设计独立的PD反馈控制器. 为了提高整个控制系统的振动抑制性能, 结合多模态振动控制的特点, 引入一种具有实际意义的性能指标函数. 并基于此性能函数, 提出基于logistic映射的自抗扰振动控制器参数自动优化方法. 最后, 利用dSPACE半实物仿真平台, 搭建了四面固支壁板结构的压电振动控制实验系统.最后, 多模态干扰激励的实验结果表明了所提的多模态自抗扰振动主动控制方法的有效性.  相似文献   

11.
Numerical simulations of the response of a uniform, cantilever beam subjected to a base excitation are performed. A saturation absorber is implemented to control the beam response. In previous investigations of similar configurations, the inertial and structural properties of the piezoelectric actuators have been neglected, resulting in an analytical model of a uniform beam. This investigation includes the nonuniformities in the beam properties that are introduced when piezoelectric actuators are bonded to the uniform beam. The resulting coupling between uniform, cantilever beam modes is fully included in the analytical model. It is shown that this modal coupling has a significant effect on the beam response, which is not present when modal coupling is neglected.  相似文献   

12.
高速车辆结构振动的独立模态空间控制   总被引:1,自引:0,他引:1  
铁路高速客车或轻型车辆的车体结构振动不仅影响车辆运行品质,而且导致车体结构动应力的增加和疲劳寿命的降低.本文在建立高速车辆的柔刚体系统动力学模型基础上,应用最优控制理论,提出了抑制车体的特定低阶垂直弯曲振动独立模态空间控制方法和已改善车辆运行平稳性为目标的控制策略,分析结果表明:该控制办法和策略可以较好地降低特定模态振动的幅度,改善车辆垂直运行平稳性.  相似文献   

13.
Piezoelectric beam dynamics are characterized by elastic properties, nonlinearities, uncertainties, and unknown disturbances, thus making vibration suppression a challenging control problem. To meet this challenge, a novel active control method has been designed and rigorously tested on actual hardware without the requirement of extensive modeling. In this unique approach, the piezoelectric beam dynamics, known or unknown, linear or nonlinear, and all external disturbances are treated in their totality as an input disturbance which is subsequently estimated and canceled in real time, reducing the challenging problem to a very manageable one. Simulation and experimental results demonstrate the effectiveness of this practical control method. The frequency domain characteristics of the proposed method are analyzed using Bode and describing function methods.  相似文献   

14.
This article addresses the problem of piezoelectric actuator design for active structural vibration control. The topology optimization method using the Piezoelectric Material with Penalization and Polarization (PEMAP-P) model is employed in this work to find the optimum actuator layout and polarization profile simultaneously. A coupled finite element model of the structure is derived assuming a two-phase material, and this structural model is written into the state-space representation. The proposed optimization formulation aims to determine the distribution of piezoelectric material which maximizes the controllability for a given vibration mode. The optimization of the layout and poling direction of embedded in-plane piezoelectric actuators are carried out using a Sequential Linear Programming (SLP) algorithm. Numerical examples are presented considering the control of the bending vibration modes for a cantilever and a fixed beam. A Linear-Quadratic Regulator (LQR) is synthesized for each case of controlled structure in order to compare the influence of the polarization profile.  相似文献   

15.
为了提高新型传感器柔性结构振动抑制能力,提出基于遥测技术的新型传感器柔性结构振动优化控制方法。在速度坐标系、体坐标系下构建新型传感器柔性结构的振动动力学模型,采用卡尔曼滤波方法实现对新型传感器柔性结构振动参数的融合调节和小扰动抑制。采用气弹模态参数识别方法,进行新型传感器柔性结构的振动模态参数识别,提取新型传感器柔性结构振动特征量,采用遥测技术进行新型传感器柔性结构振动惯性参数识别,结合状态反馈调节方法进行稳定性控制,实现新型传感器柔性结构振动优化控制。仿真结果表明,采用该方法进行新型传感器柔性结构振动优化控制的自适应性较好,具有很好的振动抑制和控制能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号