首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
退火温度对连铸连轧低碳钢板性能和织构的影响   总被引:1,自引:1,他引:0  
在实验室条件下,模拟了CSP热轧带钢供冷轧原料的SPCC级低碳钢板的罩式炉退火过程.通过观察显微组织、力学性能测试和利用三维取向分析术(ODF),研究了退火温度对显微组织、力学性能、织构的影响.结果表明,随退火温度的升高,A50rm、△r值都逐渐升高,rm达到1.82退火后铁素体晶粒变得粗大,变形织构{112}<110>变弱.表明提高温度可以消除变形织构,有利织构{111}<110>增强,{001}<110>变弱,共同造成rm由升高.  相似文献   

2.
冷轧大压下量下新型无取向电工钢的退火组织演变   总被引:1,自引:0,他引:1  
研究了冷轧大压下量,950 ℃退火时间对一种新型含铜无取向电工钢晶粒度和织构的影响.结果表明,大压下量冷轧,随压下量的增加,退火晶粒向γ线聚集,形成强{111}<112>织构.提高冷轧压下率,退火织构 {111}<100>,{110}<001>强度减弱,增加退火时间,退火织构{111}<110>,{100}<001>,{110}<001>强度变弱.采用87.5%冷轧压下率和950 ℃退火60 s,有利织构{100},{110}占有率最大.  相似文献   

3.
在试验室条件下,模拟了CSP热轧带钢供冷轧原料的SPCC级低碳钢板的罩式炉退火过程,分析了不同退火工艺对CSP热轧带钢供冷轧原料的SPCC板的深冲性能和组织的影响,研究了织构随升温速度变化的演变规律.试验结果表明随升温速度的降低,rm、△r值都逐渐升高,rm为1.68,△r达到0.68:变形织构{112}《110》变弱,表明降低升温速度可以消除变形织构,但速度低于40℃/h时消除作用就不明显.降低升温速度也可以使{111}《110》织构和{111}《112》织构的强度差增大.钢板△r值的变化受多重因素影响,{111}《110》织构和{111}《112》织构的强度差可能足导致△r值升高的原因之一.  相似文献   

4.
郑之旺  刘庆春  李叙生 《轧钢》2010,27(3):11-15
以工业生产的Ti-IF钢热轧板为研究材料,结合连续热镀锌线的工艺特点,采用实验室冷轧、盐浴退火方法和金相、X射线织构测试和力学性能检测等分析手段,研究了冷轧压下率对组织、织构和深冲性能的影响规律。试验结果表明,随着冷轧压下率从60%提高到90%,冷轧态α取向线上的取向密度不断增强,主要形成了{223}〈110〉和{114}〈110〉织构,γ取向线上的{111}〈011〉和{111}〈112〉织构亦有所增强;退火后铁素体晶粒尺寸从9.0级细化到10.5级,导致强度(特别是屈服强度)有所增加,η_(90°)值有所降低。试验钢退火后仍具有较强的{223}〈110〉和{114}〈110〉织构,此外,随着冷轧压下率从60%提高到80%,{111}〈110〉和{111}〈112〉织构有增强的趋势,且{111}〈110〉织构比{111}〈112〉织构强,r_(90°)值有所提高;当冷轧压下率进一步提高到90%时,{111}〈112〉织构明显增强,但{111}〈110〉织构变化较小,导致{111}〈112〉织构比{111}〈110〉织构强,使r_(90°)值反而有所降低,这与γ织构分布变化导致制耳分布曲线由典型的4制耳特征转变为6制耳特征有关。  相似文献   

5.
通过背散射电子衍射(EBSD)、XRD、拉伸试验、硬度测试、热膨胀测试、磁性能测试等研究了20%~90%不同冷轧压下率对因瓦合金显微组织、力学性能、热膨胀性能、饱和磁化强度和织构演变的影响。结果表明,随着冷轧压下率的增加,固溶态等轴晶粒通过位错滑移发生变形,合金被逐渐压扁拉长形成了特定的取向,导致合金的强度和硬度提高,而塑性快速下降,90%压下率时合金抗拉强度为777 MPa,而伸长率则只有5%。当冷轧压下率未超过80%时,合金的在20~100℃的平均线膨胀系数和饱和磁化强度呈现先减小后增大趋势,在60%压下率时取得最小值。合金中{110}<112>黄铜织构,{112}<111}铜型织构,{136}<634>S型织构强度随变形程度的提高而增大,当冷轧压下率达到80%时合金中形成了强烈的织构。  相似文献   

6.
以含Nb细晶高强IF钢热轧板为研究对象,研究了冷轧压下率对实验钢冷轧织构以及再结晶织构形成影响。结果表明,退火后铁素体晶粒细化,强度提高。实验钢经冷轧后主要的织构为{112}110、{111}112、{111}110、{001}110,并且随冷轧压下率增加,织构组分无变化,各组分强度整体增加。再经退火后,在α线上织构减弱,甚至一些织构逐渐消失。提高冷轧压下率时,织构峰值逐渐由{001}110转为{111}110。对于γ取向线,峰值由{111}110取向变为{111}112取向,最终{111}112比{111}110取向强度大。实验钢再结晶机制由定向形核和选择生长共同作用的结果,并且随冷轧压下率增大,{111}面织构强度增大,所以r(塑性应变比)值增大,深冲性能提高。  相似文献   

7.
为了研究变形织构对力学性能的影响,对纯钼板进行不同工艺的交叉轧制,然后表征所得钼板的织构、力学性能和显微组织。结果表明:交叉轧制有利于钼板形成旋转立方织构,即{001}110织构,其取向密度随着轧制总变形量和当前道次变形量的增大而增大;当轧制总变形量达到96%或更高时,钼板会形成以{001}110织构为主导的晶粒取向,而纤维织构变弱,同时立方织构{001}100完全消失。{001}110织构的存在有利于交叉轧制钼板轧制方向和垂直轧制方向的强度提高和塑性降低。  相似文献   

8.
研究了冷轧压下率(65%、70%、75%、80%)对超低碳铝镇静深冲钢(0.0025%C)再结晶退火显微组织与成形性能的影响规律。结果表明:随压下率提高,再结晶晶粒尺寸减小,抗拉强度变化不大而屈服强度略有上升,塑性应变比r值升高明显;压下率增至80%时,r值最高达2.35。织构分析表明:r值的升高与织构变化规律相符,压下率80%时,退火板的{111}织构强度最大;压下率75%时,退火板的{112}110织构强度最高,{111}110与{111}112两种织构强度差值最小。  相似文献   

9.
采用硬度计、拉伸试验机、光学显微镜和X射线衍射仪研究了二次冷轧压下率对镀锡原板组织性能的影响规律。结果表明,随着二次冷轧压下率提高,试验钢的硬度和强度提高,各向异性增加,伸长率降低,而硬度和强度的增幅和伸长率的降幅逐渐减小。二次冷轧压下率对织构影响明显。随着二次冷轧压下率提高,α取向线中{001}110~{114}110的取向密度峰值逐渐从4.9提高到6.2;{223}110~{445}110的取向密度峰值逐渐从3.2提高到5.1;{332}110的取向密度峰值逐渐从3.4提高到3.8;但二次冷轧压下率对γ取向线的织构取向密度影响较小。  相似文献   

10.
以工业生产的不同冷轧压下率Nb+Ti-IF钢退火板为原料,通过微观组织观察,力学性能和XRD宏观织构测试,从冷轧过程中晶粒转动差异上来分析冷轧压下率对Nb+Ti-IF钢织构和成形性能的影响.试验结果表明:在相同的热轧和退火工艺条件下,高的冷轧压下率促使在冷轧过程中形成较多的{111}〈110〉冷轧织构,在退火过程中会形成较强的{111}〈211〉织构,{111}〈211〉织构的增加可以大幅度提升45°方向的r值,从而在改善各向异性的基础上使平均r值提高0.4~0.5,同时使n值从0.22增加到0.28.  相似文献   

11.
冷轧压下率对铁素体不锈钢深冲性能的影响   总被引:1,自引:1,他引:0  
为了获得优良的深冲性能,通过变化冷轧压下率,研究了其对铁素体不锈钢显微组织,织构和深冲性能的演化规律.结果显示,随着冷轧压下率的增加,平均塑性应变比(r值)单调增加,这主要是因为退火织构{111}<112>强度的显著增加.另一方面,平面各向异性(△r值)随着压下率的增加先增加后减小,在冷轧压下率为80%时达到最小,冷轧压下率继续增加到90%时,退火织构的峰值逐渐偏离{111}织构,接近{223}<582>,△r值重新增大.  相似文献   

12.
研究冷轧变形量(40%、75%和95%)和退火温度(650、750和850℃)对亚稳β钛合金Ti-7.5Nb-4Mo-2Sn(原子分数,%)的显微组织、织构和超弹性的影响。结果表明:不同冷轧变形量变形后,合金中出现了{111}110,{111}112和{001}110型冷轧织构,随变形量增大,冷轧织构强度有小幅度增加,其中以{111}112、{111}110型织构强度增幅度最大;经过650~850℃退火后,合金发生再结晶,并形成了再结晶织构,其中变形量为95%、650℃退火后,试样的组织由细小的等轴状β相构成,同时形成了较强的{112}110,{111}112再结晶织构,合金试样表现出较好的超弹性,其应变回复率71.5%;细小的等轴晶组织和{111}112再结晶织构,能提高合金的超弹性能。  相似文献   

13.
肖利 《金属热处理》2012,37(5):88-91
以工业生产的高强Nb-IF钢为试验材料,在实验室研究了卷取温度和冷轧压下率对试验钢显微组织和力学性能的影响。结果表明:试验钢退火后均为完全再结晶组织;不同卷取温度下,随着冷轧压下率的增加,晶粒变得细小均匀;当卷取温度为650℃且冷轧压下率为75%时,以及卷取温度600℃和700℃且冷轧压下率65%时,试验钢的织构强度逐渐增大,并且峰值有向{111}织构靠拢的趋势,可以得到优良的深冲性能。  相似文献   

14.
390MPa级超低碳BH钢织构演变规律   总被引:1,自引:0,他引:1  
采用ODF织构分析方法,对390 MPa级超低碳BH钢板热轧、冷轧、退火过程织构演变规律进行研究,并对不同冷轧压下量和不同退火工艺织构进行分析。结果表明:经冷轧变形后的钢板有较强的择优取向,具有典型的{112}<110>和{111}<110>织构,形变织构中的不利织构{001}<110>较强;冷轧压下率为80%时再结晶退火后钢板具有较强的γ织构,{111}<112>织构取向密度高达11.7;退火温度和保温时间对α织构影响不大,提高退火温度和延长保温时间使γ织构增强,r值增加。  相似文献   

15.
TRIP钢显微组织和织构的研究   总被引:1,自引:1,他引:0  
用光学显微镜和X射线衍射仪研究了高强度冷轧相变诱发塑性(TRIP)钢经过热处理后的显微组织和织构,提出了用面探测器同时测量fcc相与bcc相极图的方法,并对bcc相热处理前后织构变化进行了分析。实验结果表明,冷轧TRIP钢热处理后的显微组织为铁素体、贝氏体及残余奥氏体的多相组织,冷轧TRIP钢的主要取向为{112}〈110〉,以及{001}〈110〉和{332}〈113〉,而热处理后{112}〈110〉密度降低,同时{001}〈110〉消失。分析了热处理工艺对冷轧TRIP钢显微组织的影响并计算了残余奥氏体体积分数,讨论了TRIP钢中显微组织形貌、残余奥氏体体积分数以及残余奥氏体中碳含量对其力学性能的影响。  相似文献   

16.
采用不同的二次冷轧压下率分别制备了0.27、0.23和0.20 mm的CGO硅钢,利用X射线衍射仪(XRD)和电子背散射衍射技术(EBSD)对3种不同厚度试样的初次再结晶织构组分含量和分布状态进行了对比研究。结果表明,经过不同二次冷轧压下率,试样中初次再结晶基体的织构类型相同,以γ织构和α取向线上{112}110至{111}110区间的织构为主,二次冷轧压下率越大,初次再结晶基体中Goss晶粒的含量越多,位向更准确,{111}110和{111}112等有利织构的含量也越多,有利于增强二次再结晶后Goss织构的锋锐程度,并使成品的磁性能得到提高。  相似文献   

17.
利用光学显微镜、XRD、EBSD等研究了轧制工艺对薄带铸轧无取向硅钢组织、织构和磁性能的影响。研究表明,随热轧压下率增大,冷轧组织变形储能及剪切带的比例逐渐降低,冷轧板中α织构减弱,γ织构增强。退火板晶粒尺寸随热轧压下率增大而增加。热轧压下率为17%及40%时,退火织构以强的Goss织构及相对弱的{100}织构为主,热轧压下率达到55%后,退火织构为强的{115}<110>和{114}<371>织构,Goss织构和{100}组分明显减弱。随热轧压下率增大,退火板磁感值先升高后降低,铁损值先减小后增加。热轧压下率为40%时,退火板综合磁性能最优。  相似文献   

18.
系统研究热加工过程对Al-Mg-Si-Cu合金组织、织构及力学性能的影响。通过工艺优化获得了力学性能各向异性很弱的合金板材。热轧和冷轧板材的显微组织均呈拉长态组织。热轧板表层的织构组分以H{001}110和E{111}110为主,而1/4层和中间层的织构以β取向线为主。与热轧板相比,一次冷轧板的β取向线密度增加而表层的H取向减弱。经中间退火后,形变织构基本消失,最终冷轧后的织构以β取向线为主。随着厚度的减小,织构梯度逐渐变弱。合金板材固溶处理后的再结晶织构组分仅含有cubeND{001}310织构。此外,分析了热加工过程、显微组织、织构以及力学性能之间的关系。  相似文献   

19.
高磁感取向硅钢轧制和再结晶织构的研究   总被引:1,自引:0,他引:1  
本文介绍了用X射线和蚀坑方法研究含MnS-AlN为抑制相的3%Si-Fe合金形变和初次再结晶织构。与MaS为抑制相的3%Si-Fe不同,含MnS-AlN的3%Si-Fe的热轧织构主要是由{112}<110>,{111}<110>,{100}<110>和{111}<112>组分构成。研究中曾发现在80—87%冷轧压下率范围内冷轧织构同热轧织构具有“继承性”联系。冷轧时超过87%压下后织构将向(100)[011]稳定位向转变,后者显然对磁性不利。文中还对热轧、冷轧和初次再结晶织构的转变关系作了讨论。  相似文献   

20.
采用光学显微镜观察及电子背散射衍射对DC04钢热轧卷取、冷轧、退火阶段的显微组织,钢板全厚度区域以及不同厚度层的织构类型及含量进行了分析。结果表明,热轧卷取样品各类型织构均较弱,{111}112、{111}110两种织构在不同厚度层含量变化不明显,而{112}110、{001}110两种织构的含量呈现由表层到中心方向递增趋势,且表层与中心织构含量差异明显。冷轧过程中,不同厚度层{112}110、{001}110两种织构含量的差异逐渐缩小。冷轧后,试验钢中{111}112、{111}110、{112}110、{001}110这4种织构均有所增强。退火过程中,试验钢中的{112}110、{001}110织构不断向{111}112、{111}110织构转化。退火后,{111}112、{111}110织构明显增强,各织构组分在不同厚度层的分布较为均匀。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号