首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
With the emerging development of three-dimensional (3D) related technologies, 3D visual saliency modeling is becoming particularly important and challenging. This paper presents a new depth perception and visual comfort guided saliency computational model for stereoscopic 3D images. The prominent advantage of the proposed model is that we incorporate the influence of depth perception and visual comfort on 3D visual saliency computation. The proposed saliency model is composed of three components: 2D image saliency, depth saliency and visual comfort based saliency. In the model, color saliency, texture saliency and spatial compactness are computed respectively and fused to derive 2D image saliency. Global disparity contrast is considered to compute depth saliency. Particularly, we train a visual comfort prediction function to distinguish stereoscopic image pair as high comfortable stereo viewing (HCSV) or low comfortable stereo viewing (LCSV), and devise different computational rules to generate a visual comfort based saliency map. The final 3D saliency map is obtained by using a linear combination and enhanced by a “saliency-center bias” model. Experimental results show that the proposed 3D saliency model outperforms the state-of-the-art models on predicting human eye fixations and visual comfort assessment.  相似文献   

2.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号