首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Controlling the group of picture (GOP) size in distributed video coding (DVC) is a difficult but important task since it has a direct impact on the coding performance. This paper presents a framework to adaptively control the size of GOPs in a Wyner–Ziv encoder by means of encoder-side decisions based on support vector machines (SVM) that uses simple features extracted from the original video content. To train the SVM, firstly this work proposes how to compute the sequence of GOP sizes with the best rate-distortion performance given the set of GOP sizes that can be used during the encoding process. Then, an algorithm based on the previously trained SVMs is presented to control the actual GOP size each time a new decision can be taken at the encoder. Results show that the proposed algorithm can achieve a rate distortion performance close to the ideal one. Moreover, comparisons with a reference adaptive GOP size selection algorithm in the literature shows gains up to 2 dB PSNR in the best conditions.  相似文献   

2.
Mobile-to-mobile video communications constitute one of the main research areas dealing with the dynamic adaptation of traffic generated by video sources. In a framework where one mobile device sends video information to another, both transmitter and receiver should employ video encoders and decoders with low complexity. In this paper, a Variable/Constant Bitrate DVC to H.264/AVC Transcoder is proposed which takes the advantage of both paradigms in terms of low-complexity algorithms on the end-user device side (DVC encoder and H.264/AVC decoder). The proposed transcoder is based on the hypothesis that common DVC GOPs can be converted to H.264/AVC GOPs without significant rate-distortion and bitrate losses, in a flexible way. An in-depth study of the different frame types available in DVC has been carried out in order to exploit the correlation between them and the most suitable GOP pattern in H.264/AVC. Moreover, a dynamic motion estimation technique is proposed in this paper for optimizing the search area for the motion vectors, with the purpose of being used in combination with the GOP mapping approach. Simulation results show that the proposed approaches reduce the DVC to H.264/AVC transcoder complexity by up to 60% on average, while maintaining the coding efficiency in CBR and VBR scenarios, achieving very high quality results over different types of metrics (both objective and subjective). Finally, we conduct a comparative study with all the most prominent DVC transcoding proposals available in the literature, showing that the proposed transcoder achieves the best results (in terms of PSNR and bitrate).  相似文献   

3.
We present in this paper a new distributed video coding (DVC) architecture for wireless capsule endoscopy. It is based on the state of the art DVC systems, but without using key frames. Instead, it uses an adapted vector quantization (VQ) with a searching complexity that is shifted to the decoder. VQ allows creating a good side information (SI) by exploiting the similarities in human anatomy. Thus, SI is created from a codebook (CB) rather than by motion compensated prediction. This approach decreases largely the complexity of the encoder, which codes only Wyner-Ziv frames, and allows a progressive decoding. The encoder of the proposed DVC generates only a simple hash that is used by the decoder to select the corresponding VQ codeword. The obtained experimental results show that rate-distortion results are better than those of JPEG, and show the possibility of using scalable coding to control the used rate and energy.  相似文献   

4.
3D-DWT encoders are good candidates for applications like professional video editing, IPTV video surveillance, live event IPTV broadcast, multispectral satellite imaging, HQ video delivery, etc., where a frame must be reconstructed as fast as possible. However, the main drawback of the algorithms that compute the 3D-DWT is the huge memory requirement in practical implementations. In this paper, and in order to considerably reduce the memory requirements of this kind of video encoders, we present a new 3D-DWT video encoder based on (a) the use of a novel frame-based 3D-DWT transform that avoids video sequence partitioning in Groups Of Pictures (GOP) and (b) a very fast run-length encoder. Furthermore, an exhaustive evaluation of the proposed encoder (3D-RLW) has been performed, analyzing the sensibility of the filters employed in the 3D-DWT transform and comparing the evaluation results with other video encoders in terms of R/D, coding/decoding delay and memory consumption.  相似文献   

5.
Although it was proven in the 1970s already by Wyner and Ziv and Slepian and Wolf that, under certain conditions, the same rate–distortion boundaries exist for distributed video coding (DVC) systems as for traditional predicting systems, until now no practical DVC system has been developed that even comes close to the performance of state-of-the-art video codecs such as H.264/AVC in terms of rate–distortion. Some important factors for this are the lower accuracy of the motion estimation performed at the decoder, the inaccurate modeling of the correlation between the side information and the original frame, and the absence in most state-of-the-art DVC systems of anything conceptually similar to the notion of skipped macroblocks in predictive coding systems.This paper proposes an extension of a state-of-the-art transform domain residual DVC system with an implementation of skip mode. The skip mode has an impact at two different places: in the turbo decoder, more specifically the soft input, soft output (SISO) convolutional decoder, and in the puncturing of the parity bits. Results show average bitrate gains up to 39% (depending on the sequence) achieved by combining both approaches.Furthermore, a hybrid video codec is presented where the motion estimation task is shifted back to the encoder. This results in a drastic increase in encoder complexity, but also in a drastic performance gain in terms of rate–distortion, with average bitrate savings up to 60% relative to the distributed video codec. In the hybrid video codec, smaller but still important average bitrate gains are achieved by implementing skip mode: up to 24%.  相似文献   

6.
Distributed video coding (DVC) features simple encoders but complex decoders, which lies in contrast to conventional video compression solutions such as H.264/AVC. This shift in complexity is realized by performing motion estimation at the decoder side instead of at the encoder, which brings a number of problems that need to be dealt with. One of these problems is that, while employing different coding modes yields significant coding gains in classical video compression systems, it is still difficult to fully exploit this in DVC without increasing the complexity at the encoder side. Therefore, in this paper, instead of using an encoder-side approach, techniques for decoder-side mode decision are proposed. A rate-distortion model is derived that takes into account the position of the side information in the quantization bin. This model is then used to perform mode decision at the coefficient level and bitplane level. Average rate gains of 13–28% over the state-of-the-art DISCOVER codec are reported, for a GOP of size four, for several test sequences.  相似文献   

7.
Distributed video coding (DVC) is a new video coding paradigm based upon two fundamental theoretical results: the Slepian–Wolf and Wyner–Ziv theorems. Among other benefits, this new coding paradigm may allow a flexible complexity allocation between the encoder and the decoder. Several DVC codecs have been developed over the years addressing the specific requirements of emerging applications such as wireless video surveillance and sensor networks. While state-of-the-art DVC codecs, such as the DISCOVER DVC codec, have shown promising RD performance, most DVC codecs in the literature do not consider low delay requirements which are relevant for some of the addressed applications. In this context, the main objective and novelty of this paper is to propose an efficient, low delay and fully practical DVC codec based on the Stanford DVC architecture adopting a side information iterative refinement approach. The obtained performance results show that the developed DVC solution fulfils the objectives regarding relevant benchmarks, notably due to the novel side information creation and correlation noise modeling tools integrated in a side information iterative refinement framework.  相似文献   

8.
In this paper we propose and compare different distributed video coding (DVC) schemes based on the use of the wavelet transform, which naturally allows for spatial and other forms of scalability. In particular, we propose a hybrid encoder which utilizes channel codes, and evaluate its performance in the absence of a feedback channel. The proposed scheme uses statistical models for the estimation of the required bitrate at the encoder. We also propose a scheme that is based on a modulo reduction procedure and does not use channel codes at the receiver/transmitter. These schemes are compared with more conventional coders that do not or only partially exploit the distributed coding paradigm. Experimental results show that the considered schemes have good performance when compared with similar asymmetric video compression schemes, and that DVC can be an interesting option in appropriate scenarios.  相似文献   

9.
In this paper, we propose a perceptual-based distributed video coding (DVC) technique. Unlike traditional video codecs, DVC applies video prediction process at the decoder side using previously received frames. The predicted video frames (i.e., side information) contain prediction errors. The encoder then transmits error-correcting parity bits to the decoder to reconstruct the video frames from side information. However, channel codes based on i.i.d. noise models are not always efficient in correcting video prediction errors. In addition, some of the prediction errors do not cause perceptible visual distortions. From perceptual coding point of view, there is no need to correct such errors. This paper proposes a scheme for the decoder to perform perceptual quality analysis on the predicted side information. The decoder only requests parity bits to correct visually sensitive errors. More importantly, with the proposed technique, key frames can be encoded at higher rates while still maintaining consistent visual quality across the video sequence. As a result, even the objective PSNR measure of the decoded video sequence will increase too. Experimental results show that the proposed technique improves the R-D performance of a transform domain DVC codec both subjectively and objectively. Comparisons with a well-known DVC codec show that the proposed perceptual-based DVC coding scheme is very promising for distributed video coding framework.  相似文献   

10.
Compression of captured video frames is crucial for saving the power in wireless capsule endoscopy (WCE). A low complexity encoder is desired to limit the power consumption required for compressing the WCE video. Distributed video coding (DVC) technique is best suitable for designing a low complexity encoder. In this technique, frames captured in RGB colour space are converted into YCbCr colour space. Both Y and CbCr representing luma and chroma components of the Wyner–Ziv (WZ) frames are processed and encoded in existing DVC techniques proposed for WCE video compression. In the WCE video, consecutive frames exhibit more similarity in texture and colour properties. The proposed work uses these properties to present a method for processing and encoding only the luma component of a WZ frame. The chroma components of the WZ frame are predicted by an encoder–decoder based deep chroma prediction model at the decoder by matching luma and texture information of the keyframe and WZ frame. The proposed method reduces the computations required for encoding and transmitting of WZ chroma component. The results show that the proposed DVC with a deep chroma prediction model performs better when compared to motion JPEG and existing DVC systems for WCE at the reduced encoder complexity.  相似文献   

11.
Wyner-Ziv视频编码中无反馈速率控制算法研究   总被引:1,自引:0,他引:1  
宋彬  杨明明  秦浩  贺红 《通信学报》2011,32(12):1-7
为了避免在分布式视频编码系统中使用反馈信道,提出了一种基于Wyner-Ziv编码的无反馈速率控制算法。首先,利用目标码率和目标帧率进行GOP层码率分配;然后,根据原始图像的帧间相关性动态选择量化因子和量化矩阵来分配每个GOP内关键帧和Wyner-Ziv帧的比特数;接下来,利用系数带级的相关性计算相关噪声模型参数,并选择对应的LDPC校验矩阵,提出Wyner-Ziv帧的无反馈比特面速率控制算法。实验结果表明,在给定目标码率下,所提算法的编码码率误差小于0.57%,且与现有无反馈速率控制算法相比,解码恢复图像的PSNR(峰值信噪比)可以提高1dB。另外,该算法基本没有增加编码端复杂度,可用于实际分布式视频通信系统。  相似文献   

12.
As a state-of-the-art video compression technique, H.264/AVC has been deployed in many surveillance cameras to improve the compression efficiency. However, it induces very high coding complexity, and thus high power consumption. In this paper, a difference detection algorithm is proposed to reduce the computational complexity and power consumption in surveillance video compression by automatically distributing the video data to different modules of the video encoder according to their content similarity features. Without any requirement in changing the encoder hardware, the proposed algorithm provides high adaptability to be integrated into the existing H.264 video encoders. An average of over 82% of overall encoding complexity can be reduced regardless of whether or not the H.264 encoder itself has employed fast algorithms. No loss is observed in both subjective and objective video quality.  相似文献   

13.
A transform domain distributed video coding (DVC) codec is proposed using turbo trellis coded modulation (TTCM). TTCM symbols are generated at the DVC decoder using the side information and the parity bits received from the DVC encoder. These generated symbols are used at the TTCM-based DVC decoder to decode the bit stream. Simulation results show that a significant rate-distortion performance gain can be achieved using the proposed codec compared to the best state-of-the-art transform domain DVC codecs discussed in the literature.  相似文献   

14.
一种空间域Wyner-Ziv视频编码系统的性能改进算法   总被引:1,自引:0,他引:1  
干宗良  齐丽娜  朱秀昌 《电子学报》2007,35(10):2014-2018
分布式视频编码是建立在Slepian-Wolf和Wyner-Ziv信息编码理论基础上的全新视频编码框架,具有编码复杂度低,编码效率较高,抗误码性能好的特点.本文首先简单介绍了一种典型的分布式视频编码实现方案——空间域Wyner-Ziv视频编码,随后提出一种空间域Wyner-Ziv视频编码系统的性能改进算法,该算法在不增加编码复杂度的基础上,在解码端利用双向运动估计预测获取更高质量的边信息,同时采用基于Huber-Markov随机场约束的联合迭代解码算法重建图像.实验结果表明,在相同的输出码流情况下,本文改进算法在解码端重建图像的峰值信噪比与空间域Wyner-Ziv视频编码算法相比平均提高2dB,并且主观效果有所改善.  相似文献   

15.
A nonlinear quantisation algorithm for pixel domain distributed video codec (DVC) is proposed. A residual signal is generated at the encoder considering the Wyner-Ziv frame to be encoded and adjacent reference frames and this residual signal is quantised using a nonlinear quantiser. The proposed algorithm is simulated for a number of test video sequences and the results depict a significant improvement of rate distortion performance, by reducing the bit rate while keeping the same PSNR when compared with available pixel domain DVC codec that uses a linear quantiser.  相似文献   

16.
The digital standard definition television (SDTV) encoder is a very important part of the digital TV broadcast chain. Most real-time MPEG-2 encoders are designed to perform in a constant bit-rate (CBR) mode. But an even better compressed stream can be created by employing a variable bit-rate (VBR) encoding algorithm. VBR can be exploited as a means of achieving statistical multiplexing for digital broadcast satellites. This paper suggests an implementation procedure of an SDTV video encoder and proposes a novel VBR bit-allocation strategy that could be implemented in this encoder system. First, using a rate-quantization model and rate-quantization perceptual model, a real-time VBR bit-allocation strategy is deduced. In this strategy, more (or fewer) bits are allocated to "difficult-to-encode" (or "easy-to-encode") groups of pictures (GOPs), which are distinguished according to the estimated encoding complexity of the GOPs. After allocating an appropriate number of bits to each GOP by using this VBR bit-allocation strategy, we use a CBR rate control algorithm to allocate a number of bits and select a quantization scaler for each picture of a GOP. Then smooth visual quality is achieved not only in a GOP but also in the whole video sequence. Second, the system implementation of an SDTV video encoder including a video input module, a video encoding module, a system control and rate control module (SCRCM), and a PES packetizing module is described. We also discuss in detail how to implement our real-time VBR bit-allocation strategy in the SCRCM. Finally, experimental results demonstrate that our proposed VBR encoder displays a better performance than the CBR encoder.  相似文献   

17.
State-of-the-art coders have been optimised over years according to the needs of the broadcasting industry. There are however key applications of coding technology whose challenges and requirements substantially differ from broadcasting. One of these key applications is surveillance. In this paper an efficient approach for surveillance centric joint source and channel coding is proposed. Contrasting conventional coders, the proposed system has been developed according to the requirements of surveillance application scenarios. It aims at achieving bit-rate optimisation and adaptation of surveillance videos for storing and transmission purposes. In the proposed approach the encoder communicates with a video content analysis (VCA) module that detects events of interests in video captured by CCTV. Bit-rate optimisation and adaptation is achieved by exploiting the scalability properties of the employed codec. Temporal segments containing events relevant to surveillance application are encoded using high spatio-temporal resolution and quality while the portions irrelevant from the surveillance standpoint are encoded at low spatio-temporal resolution and/or quality. Furthermore, the approach jointly optimises the bit allocation between the wavelet-based scalable video coder and forward error correction codes. The forward error correction code is based on the product code constituting of LDPC codes and turbo codes. Turbo codes show good performance at high error rates region but LDPC outperforms turbo codes at low error rates. Therefore, the concatenation of LDPC and TC enhances the performance at both low and high signal-to-noise (SNR) ratios. The proposed approach minimises the distortion of reconstructed video, subject to constraint on the overall transmission bit-rate budget. Experimental results clearly demonstrate the efficiency and suitability of the proposed approach in surveillance applications.  相似文献   

18.
A novel intra-coding technique is proposed that eliminates the requirement of a secondary coding scheme for coding the key frames in distributed video coding (DVC). The proposed technique uses the Slepian-Wolf theorem and Wyner-Ziv (WZ) coding with spatially predicted information to transmit the key-frames to the DVC decoder. Simulation results show that the proposed WZ-intra coding technique (WZ-I) can achieve up to 5 dB PSNR gain compared to MPEG-2 intra coding (MPEG-I) at the same bit rate with negligible computational cost to the encoder  相似文献   

19.
Unidirectional distributed video coding (DVC) is one of the untouched areas of DVC, which has to be necessarily employed when the feedback channel is not available. Thus, to serve that purpose, proposed is a unidirectional distributed video coding using a parallel Wyner-Ziv architecture. Simulation results show that up to 6.5 dB PSNR gain can be obtained with the proposed codec over the conventional DVC codec with no feedback channel at the same bit rate and the computational cost  相似文献   

20.
A low-power, large-scale parallel video compression architecture for a single-chip digital CMOS camera is discussed in this paper. This architecture is designed for highly computationally intensive image and video processing tasks necessary to support video compression. Two designs of this architecture, an MPEG2 encoder and a DV encoder, are presented. At an image resolution of 640 × 480 pixels (MPEG2) and 720 × 576 (DV) and a frame rate of 25 to 30 frames per second, a computational throughput of up to 1.8 billion operations per second (BOPS) is required. This is supported in the proposed architecture using a 40 MHz clock and an array of 40 to 45 parallel processors implemented in a 0.2 m CMOS technology and with a 1.5 V supply voltage. Power consumption is significantly reduced through the single-chip integration of the CMOS photo sensors, the embedded DRAM technology, and the proposed pipelined parallel processors. The parallel processors consume approximately 45 mW of power resulting a power efficiency of 40 BOPS/W.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号