首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, theoretical performance of Fischer Tropsch (FT) synthesis is analyzed where its feed comes from an oxidative coupling of methane (OCM) reactor. In this model based analysis, two consecutive reactors are intended that first reactor is OCM and second reactor is FT and FT reactor performance is compared in two conditions of fixed bed and membrane reactor (MR). The parameters concerned, were CH4/O2 ratio, contact time, temperature, and amount of N2 in OCM feed. High CH4/O2 ratio gave low yield of C2+ in OCM due to insufficient oxygen, but favored FT reaction due to more yield of C5+ and other products. Therefore, it was concluded that production and yield of C5+ could be more by use of these configurations.  相似文献   

2.
The oxidative coupling of methane (OCM) was carried out in a polytropic fixed-bed reactor applying a Zr/La/Sr catalyst developed by the Neste company. Over this catalyst the OCM reaction follows a complex reaction scheme which includes primary parallel reaction steps to CO, CO2 and C2H6 and consecutive reactions of ethane to ethylene or COx. Yield of higher hydrocarbons C2+ obtained with this catalyst strongly depended on reaction conditions, i.e. low partial pressures of methane and oxygen obtained by diluting the feed gas with nitrogen and high reaction temperatures promoted C2+ selectivity and yield. The maximum yield amounted to 21.4% (20 Vol.-% CH4, 9 Vol.-% O2, 71 Vol.-% N2, T = 860°C; XCH4 = 41.8%, S = 52.5%). This result belongs to the highest yields reported in the open literature.  相似文献   

3.
A hybrid artificial neural network-genetic algorithm (ANN-GA) was developed to model, simulate and optimize the catalytic-dielectric barrier discharge plasma reactor. Effects of CH4/CO2 feed ratio, total feed flow rate, discharge voltage and reactor wall temperature on the performance of the reactor was investigated by the ANN-based model simulation. Pareto optimal solutions and the corresponding optimal operating parameter range based on multi-objectives can be suggested for two cases, i.e., simultaneous maximization of CH4 conversion and C2+ selectivity (Case 1), and H2 selectivity and H2/CO ratio (Case 2). It can be concluded that the hybrid catalytic-dielectric barrier discharge plasma reactor is potential for co-generation of synthesis gas and higher hydrocarbons from methane and carbon dioxide and performed better than the conventional fixed-bed reactor with respect to CH4 conversion, C2+ yield and H2 selectivity.  相似文献   

4.
The paper proposes a concept configuration of reactors for coupling OCM and FTS, and presents systematic simulation results. FTS section is a combination of fixed bed and membrane fluidized bed reactor, and feed of the FT reactor is supplied by OCM. The reactor configuration is compared with the consecutive reactors of OCM and one fixed bed FT reactor. Effects of CH4/O2 ratio, percent of N2 in the feed, contact time, and input temperature on the yield of ethylene and valuable hydrocarbons are studied. The results show that compared with one FTS reactor configuration, the dual FTS reactor configuration is more effective and thus gives much higher product yields. Furthermore, a main decrease is observed in the formation of CO2 and CH4.  相似文献   

5.
A three-dimensional geometry model of the particle/monolithic two-stage reactor with beds-interspace distributed dioxygen feeding for oxidative coupling of methane (OCM) was set up. The improved Stansch kinetic model adapting different operating temperatures was established to calculate the OCM reactor performance using computational fluid dynamics (CFD) and FLUENT software. The results showed that the calculated values matched well with the experimental values of the conversion of CH4 and the selectivity of products (C2H6, C2H4, CO2, CO) in the OCM reactor. The distributed dioxygen feeding with the percentage of 5–20% based oxygen flow rate of top inlet promoted the OCM reaction in monolithic catalyst bed and led to the conversion of CH4 and the selectivity and yield of C2 (C2H6 and C2H4) increase obviously. The distributed dioxygen feeding was 15%, the conversion of CH4, the selectivity and the yield of C2 reached 34.1%, 68.2% and 23.3%, respectively.  相似文献   

6.
This paper presents a performance analysis of a dual-bed autothermal reformer for hydrogen production from methane using a non-isothermal, one dimensional reactor model. The first section of Pt/Al2O3 catalyst is designed for oxidation reaction, whereas the second one based on Ni/MgAl2O4 catalyst involves steam reforming reaction. The simulation results show that the dual-bed autothermal reactor provides higher reactor temperature and methane conversion compared with a conventional fixed-bed reformer. The H2O/CH4 and O2/CH4 feed ratios affect the methane conversion and the H2/CO product ratio. The addition of steam at lower temperatures to the steam reforming section of the dual-bed reactor can produce the synthesis gas with a higher H2/CO product ratio.  相似文献   

7.
The major goal of the study is the improvement of the ignition characteristics of lean, premixed natural gas (NG) combustion under engine-like conditions. A new process is investigated involving the oxidative coupling of methane reaction (OCM) for the in situ production of C2 hydrocarbons to be used as ignition enhancers during lean combustion of methane in internal combustion (IC) engines. Addition of the OCM product mixture enhances the ignition characteristics of lean methane/air mixtures, the beneficial effect resulting from the C2H4/C2H6 components. OCM in both conventional plug flow and packed-bed membrane reactors is modelled and optimised with respect to reactor conditions and ignition characteristics. An additional ignition technique that includes flowing a jet of a fuel/air stream against a hot inert surface has been implemented for quantifying the effect of the proposed ignition enhancers.  相似文献   

8.
A two-stage, one-dimensional configuration model including the steam reforming of methane (SRM) and Fischer-Tropsch (FT) synthesis has been developed for the production of hydrocarbons. This configuration is used to investigate hydrocarbon product distribution, such as gasoline. The first SRM reactor is fed by methane and steam, and the products are converted to hydrocarbons by the second FT reactor. The model was solved numerically by applying the finite difference approximation, and the set of first-order ODEs was solved in the axial direction. The results show that complete conversion of hydrogen in the second reactor can be achieved although a small amount of carbon monoxide remains. Furthermore, at higher H2O/CH4 ratio (and low CO in feed), lower C2-C5 yield and selectivity is obtained.  相似文献   

9.
A heat‐effective ‘integrated’ process of C2H4 production, incorporating exothermic oxidative coupling of methane (OCM) carried out in the catalytic section of a flow tubular reactor, and endothermic pyrolysis of naphtha carried out in the postcatalytic section of the same reactor, studied earlier in a small silica reactor, was examined now in a scaled‐up unit with a stainless‐steel (1H18N9T) reactor (volume 400 cm3, Li/MgO catalyst bed 165 cm3). It was demonstrated that depending on the operating conditions, such an integrated process could be realized over a wide range of the relative contribution of the two component processes, leading always to an increase in the C2H4 yield, as compared with OCM or pyrolysis alone. A high degree of additivity of the yields of all products was observed in all cases, independently of the relative contribution of OCM and pyrolysis. Such results indicated that in the scaled‐up unit with a stainless‐steel reactor, the interactions between the component processes and products were only negligible under experimental conditions. The overall balance of CH4, being consumed in OCM and formed in pyrolysis, was negative, equal to zero, or positive, depending on the relative contribution of the component processes. The integrated process could be based, therefore, either on CH4 and naphtha as raw materials or exclusively on naphtha, with the recirculation of the excess of CH4 to the OCM section. Copyright © 2004 Society of Chemical Industry  相似文献   

10.
The Fischer–Tropsch synthesis over Co/γ-Al2O3 and Co–Re/γ-Al2O3 was investigated in a fixed-bed reactor at 20 bar and 483 K using feed gases with molar H2/CO ratios of 2.1, 1.5 and 1.0 simulating synthesis gas derived from biomass. With lower H2/CO ratios in the feed, the CO conversion and the CH4 selectivity decreased, while the C5+ selectivity and olefin/paraffin ratio for C2–C4 increased slightly. The water–gas shift activity was low for both catalysts, resulting in high molar usage ratios of H2/CO (close to 2.0), even at the lower inlet ratios (i.e. 1.5 and 1.0). For both catalysts, the drop in the production rate of hydrocarbons when shifting from an inlet ratio of 2.1 to 1.5 was significant mainly because the H2/CO usage ratio did not follow the change in the inlet ratio. The hydrocarbon selectivities were rather similar for inlet H2/CO ratios of 2.1 and 1.5, while significantly deviating from those for an inlet ratio of 1.0. With the studied catalysts, it is possible to utilize the advantages of an inlet ratio of 1.0 (higher selectivity to C5+, lower selectivity to CH4, no water–gas shifting of the bio-syngas needed prior to the FT reactor) if a low syngas conversion is accepted.  相似文献   

11.
Evidence for a cation intermediate during methanol dehydration on Pt(110)   总被引:1,自引:0,他引:1  
NiB amorphous alloy and Ni catalysts supported on HMCM-22, HZSM-5, HY, -Al2O3 and SiO2 were prepared, respectively, by the chemical reduction method and the standard incipient wetness impregnation method. These catalysts were examined for catalytic performance in the two-step conversion of CH4 to produce hydrogen and higher hydrocarbons. All catalysts give similar methane conversion and yields of hydrogen and H-deficient carbon-containing species in step I. In the subsequent hydrogenation step (step II), they have similar carbon conversion, however, the yield of C2 and C3 hydrocarbons depends greatly on the nature of the metal particles and support acidity. Supported NiB amorphous alloy catalysts offer higher yield of C2 and C3 hydrocarbons than the corresponding Ni catalysts, due to their unique properties: nanoscale size, long-range disorder in structure, and electron-deficiency. Of the zeolite supported catalysts, HMCM-22 and HZSM-5 supported catalysts produce higher yield of C2 and C3 hydrocarbons than the zeolite HY supported catalyst because of stronger acidity of the supports. A NiB/HMCM-22 catalyst shows a rather slow deactivation during a multiple reaction cycles test. High temperature favors CH4 decomposition and H2 production in step I, but makes the subsequent hydrogenation of carbon formed from CH4 decomposition difficult. The nature of the carbons formed from CH4 decomposition was also studied by XPS and TEM combined with H2-TPSR.  相似文献   

12.
The hydrogenation of CO2 to hydrocarbons over a precipitated Fe-Cu-Al/K catalyst was studied in a slurry reactor for the first time. Reducibility of the catalyst and effect of reaction variables (temperature, pressure and H2/CO2 ratio of the feed gas) on the catalytic reaction performance were investigated. The reaction results indicated that the Fe-Cu-Al/K catalyst showed a good CO2 hydrogenation performance at a relatively low temperature (533 K). With the increase of reaction temperature CO2 conversion and olefin to paraffin (O/P) ratio in C2-C4 hydrocarbons as well as the selectivity to C2-C4 fraction increased, while CO and CH4 selectivity showed a reverse trend. With the increase in reaction pressure, CO2 conversion and the selectivity to hydrocarbons increased, while the CO selectivity and O/P ratio of C2-C4 hydrocarbons decreased. The investigation of H2/CO2 ratio revealed that CO2 conversion and CH4 selectivity increased while CO selectivity and O/P ratio of C2-C4 decreased with increasing H2/CO2 ratio.  相似文献   

13.
A novel two-stage catalyst bed reactor was constructed comprising of the 5%Na2WO4-2%Mn/SiO2 particle catalyst and the 5%Na3PO4-2%Mn/SiO2/cordierite monolithic catalyst. The reaction performance of the oxidative coupling of methane (OCM) in the two-stage bed reactor system was evaluated. The effects of the bed height and operation mode, as well as the reaction parameters such as reaction temperature, CH4/O2 ratio and flowrate of feed gas on the catalytic performance were investigated. The results indicated that the two-stage bed reactor system exhibited a good performance for the OCM reaction when the feed gases were firstly passed through the particle catalyst bed and then to the monolithic catalyst bed. The CH4 conversion of 32.6% and C2 selectivity of 67.5% could be obtained with a particle catalyst bed height of 10 mm and a monolithic catalyst bed height of 50 mm in the two-stage bed reactor. Both of the CH4 conversion and C2 selectivity have been increased by 4.8% and 2.5%, respectively, as compared with the 5%Na2WO4-2%Mn/SiO2 particle catalyst in a single-bed reactor and by 7.7% and 16.1%, respectively, as compared with the 5%Na3PO4-2%Mn/SiO2/cordierite monolithic catalyst in a single-bed reactor. The catalytic performance of the OCM in the two-stage bed reactor system has been remarkably improved. The TPR results indicate the high temperature reduction oxygen species in the monolithic catalyst might be favorable to the formation of C2 products.  相似文献   

14.
Platinum–Cobalt-loaded NaY zeolite (Pt–Co/NaY) membranes were synthesized for continuous, single-step nonoxidative conversion of methane to higher hydrocarbons (C2+) and hydrogen. During isothermal operation at 300 °C, CH4 flowed on the feed side of the membrane whilst H2 flowed through the sweep side of the membrane. The C2+ products formed continuously on the H2 sweep side. The results indicate that the Pt–Co/NaY catalytic membrane can overcome the two-step limitation for nonoxidative CH4 conversion.  相似文献   

15.
The exothermicity of oxidative coupling of methane (OCM) renders a cooled packed-bed reactor impractical or impossible. Recently, we proposed an adiabatic autothermal reactor as a solution to this problem and reported the first results for stable autothermal operation (AO) with feed at ambient temperature. AO on the ignited branch is possible only in the region of steady-state multiplicity. High per-pass conversion and productivity requirements demand a stable ignited branch at the lowest possible feed temperature and high flow rate. To achieve OCM scale-up, many conditions must be satisfied simultaneously. Using a kinetic model for La2O3/CaO catalyst, we examine the impact of space time, feed methane to oxygen ratio, feed temperature, particle size, inter-phase heat and mass transfer gradients, pore-diffusion, bed scale heat/mass dispersion on the region of AO for large scale adiabatic packed-bed reactors. We show that while it is possible to achieve CH4 conversion of about 20% and C2 selectivity of about 80% in scaled-up reactors, these values are sensitive to the design and operating parameters.  相似文献   

16.
The effect of some operating conditions such as temperature, gas hourly space velocity (GHSV), CH4/O2 ratio and diluents gas (mol% N2) on ethylene production by oxidative coupling of methane (OCM) in a fixed bed reactor at atmospheric pressure was studied over Mn/Na2WO4/SiO2 catalyst. Based on the properties of neural networks, an artificial neural network was used for model developing from experimental data. To prevent network complexity and effective data input to the network, principal component analysis method was used and the number of output parameters was reduced from 4 to 2. A feed-forward back-propagation network was used for simulating the relations between process operating conditions and those aspects of catalytic performance including conversion of methane, C2 products selectivity, C2 yielding and C2H4/C2H6 ratio. Levenberg-Marquardt method is presented to train the network. For the first output, an optimum network with 4-9-1 topology and for the second output, an optimum network with 4-6-1 topology was prepared. After simulating the process as well as using ANNs, the operating conditions were optimized and a genetic algorithm based on maximum yield of C2 was used. The average error in comparing the experimental and simulated values for methane conversion, C2 products selectivity, yield of C2 and C2H4/C2H6 ratio, was estimated as 2.73%, 10.66%, 5.48% and 10.28%, respectively.  相似文献   

17.
An optimal oxygen concentration trajectory in an isothermal OCM plug flow reactor for maximizing C2 production was determined by the algorithm of piecewise linear continuous optimal control by iterative dynamic programming (PLCOCIDP). The best performance of the reactor was obtained at 1,085 K with a yield of 53.9%; while, at its maximum value, it only reached 12.7% in case of having no control on the oxygen concentration along the reactor. Also, the effects of different parameters such as reactor temperature, contact time, and dilution ratio (N2/CH4) on the yield of C2 hydrocarbons and corresponding optimal profile of oxygen concentration were studied. The results showed an improvement of C2 production at higher contact times or lower dilution ratios. Furthermore, in the process of oxidative coupling of methane, controlling oxygen concentration along the reactor was more important than controlling the reactor temperature. In addition, oxygen feeding strategy had almost no effect on the optimum temperature of the reactor. Finally, using the optimal oxygen strategy along the reactor has more effect on ethylene selectivity compared to ethane.  相似文献   

18.
Gas-phase oxidative coupling of methane (OCM) was investigated with empty tubular-flow reactors made of various materials (quartz, ceramic and stainless steel tubes). When the temperature is higher than 680°C, the CH4 conversions in three kinds of empty reactors are measurable, and the gas-phase OCM becomes noticeable at 750°C or higher. High temperature is beneficial to the activation of CH4 and the dehydrogenation of C2H6 to C2H4. Residence time of reactants in the heated volume plays an important role in the gas-phase OCM. Experiments indicated that the gas-phase OCM can be minimized by increasing reactant gas velocity or filling the free volume of the reactor with inert materials. Reactor surface also has an effect on the reaction and may participate in some surface reactions. Based on the kinetic results and the SEM investigation on the surfaces of reactors, a gas-phase reaction mechanism of OCM is proposed.  相似文献   

19.
The investigations on transformation of methane to benzene and naphthalene have been carried out in aim to verify and supplement earlier reported data and on this basis to estimate real industrial perspectives of the CH4 aromatization concept, the main challenges and barriers. Methane aromatization (direct and via oxidative coupling) has been studied over Mo/HZSM-5 catalyst used both for direct methane dehydroaromatization and for aromatization of methane oxidative coupling (OCM) products. The effects of Mo content in the catalyst, temperature, space velocity, the presence of CO2, CO, H2O, C2H4, C2H6 and their mixtures in the feed have been studied. The effectiveness of the catalyst regeneration in the air was also examined. All results were confronted with the literature data and analyzed from technological point of view. It was confirmed that direct CH4 aromatization process was characterized by a low CH4 single-pass conversion, low single-pass yields of the main products (benzene, hydrogen and naphthalene) and a low catalyst stability (rapid catalyst deactivation). Various possible technological schemes were analyzed. It was concluded that real industrial chances of direct methane aromatization or aromatization via OCM would depend largely on the advancement in the cost-effective separation techniques. The methane aromatization concept was also confronted with other methane conversion processes.  相似文献   

20.
The reactor performance of two novel fluidized bed membrane reactor configurations for hydrogen production with integrated CO2 capture by autothermal reforming of methane (experimentally investigated in Part 1) have been compared using a phenomenological reactor model over a wide range of operating conditions (temperature, pressure, H2O/CH4 ratio and membrane area). It was found that the methane combustion configuration (where part of the CH4 is combusted in situ with pure O2) largely outperforms the hydrogen combustion concept (oxidative sweeping combusting part of the permeated H2) at low H2O/CH4 ratios (<2) due to in situ steam production, but gives a slightly lower hydrogen production rate at higher H2O/CH4 ratios due to dilution with combustion products. The CO selectivity was always much lower with the methane combustion configuration. Whether the methane combustion or hydrogen combustion configuration is preferred depends strongly on the economics associated with the H2O/CH4 ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号