首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
单孔及微孔曝气低气速鼓泡床内气泡行为比较   总被引:2,自引:0,他引:2       下载免费PDF全文
梁斌  胡强  周慧  张全忠  沈伟 《化工学报》2005,56(10):1880-1886
引言鼓泡床反应器被广泛应用于吸收、液相氧化、好氧生化等气液反应过程,气体在液相中的分散情况对鼓泡床的反应和传质特性都有很大影响.为了提高气液传质效率,增加生产强度,工业反应器很多都是在高气速下操作(Ug>0·05m·s-1),很多研究都集中在高气速湍动鼓泡区[1~3].但对有机  相似文献   

2.
The orifice size has a significant influence on hydrodynamic characteristics and bubble size distribution (BSD) in gas-liquid flow. However, the mechanism of the influence of orifice size on BSD and hydrodynamic characteristics in an external loop airlift reactor (EL-ALR) has not been fully revealed. In this work, the effects of the orifice size on hydrodynamic characteristics and BSD in a laboratory scale EL-ALR were investigated using the particle image velocimetry (PIV) technique and digital image analysis (DIA). The results show that the transition superficial gas velocity becomes greater when the orifice size is reduced. The time-averaged bubble velocity profiles along the riser radius are parabolic, and the shape of the time-averaged bubble velocity curve is strongly dependent on the orifice diameter. The larger the orifice diameter, the steeper the parabolas. For sparger with lager orifice diameters, the BSD curve is bimodal even at low superficial gas velocity, and its peaks shift to a larger equivalent bubble diameter. The bubble aspect ratio appears to be related only to the equivalent diameter of the bubbles, regardless of the diameter of the orifice. It has a defined relationship between the bubble aspect ratio and the bubble equivalent diameter, and a new correlation is obtained based on the experimental data. This study will help to gain an understanding of the influence of sparger orifice size on the hydrodynamic characteristics and BSD and provide a basis for numerical simulation.  相似文献   

3.
BACKGROUND: The bubble size distribution in gas‐liquid reactors influences gas holdup, residence time distribution, and gas‐liquid interfacial area for mass transfer. This work reports on the effects of independently varied gas and liquid flow rates on steady‐state bubble size distributions in a new design of forced circulation loop reactor operated with an air–water system. The reactor consisted of a cylindrical vessel (~26 L nominal volume, gas‐free aspect ratio ≈ 6, downcomer‐to‐riser cross‐sectional area ratio of 0.493) with a concentric draft tube and an annular riser zone. Both gas and liquid were in forced flow through a sparger that had been designed for minimizing the bubble size. RESULTS: Photographically measured bubble size distributions in the riser zone could be approximated as normal distributions for the combinations of gas and liquid flow rates used. This contrasted with other kinds of size distributions (e.g. bimodal, Gaussian) that have been reported for other types of gas‐liquid reactors. Most of the bubbles were in the 3 to 5 mm diameter range. At any fixed low value of aeration rate (≤1.8 × 10?4 m3s?1), increase in the liquid flow rate caused earlier detachment of bubbles from the sparger holes to reduce the Sauter mean bubble size in the riser region. CONCLUSION: Unlike in conventional bubble columns where bimodal and Gaussian bubble size distributions have been reported, a normal bubble size distribution is attained in forced circulation loop reactors with an air–water system over the entire range of operation. Copyright © 2007 Society of Chemical Industry  相似文献   

4.
In many gasliquid processes, the initial bubble size is determined by a series of operation parameters along with the sparger design and gasliquid flow pattern. Bubble formation models for variant gasliquid flow pat terns have been developed based on force balance. The effects of the orientation of gasliquid flow, gas velocity, liquid velocity and orifice diameter on the initial bubble size have been clarified. In ambient airwater system, thesultable gasllquid flow pattern is important to obtain smaller bubbles under the low velocity liquid crossflow con ditions with stainless steel spargers. Among the four types of gasliquid flow patterns discussed, the horizontal orifice in a vertically upward liquid flow produces the smallest initial bubbles. However the orientation effects of gas and liquid flow are found tobe insgnifican whenliq.uid velocity is.higher than. 3.2 m;sa or theorifice diameter is small enough.  相似文献   

5.
When gas is continuously fed through a sparger into a downflowing liquid in a pipe a ventilated cavity is often formed. The cavity remains attached to the sparger even in the presence of high liquid flow rates that would wash away a free slug bubble. Small bubbles are shed from the base of this cavity by the falling liquid film at the wall of the pipe and these bubbles are swept downwards forming a bubbly flow that is highly effective for mass transfer. The ventilated cavity is undesirable since it reduces the driving force for liquid circulation when the pipe is the downcomer of an external air loop fermenter or analogous gas/liquid reactors. The cavity also reduces the available interfacial area for mass transfer. It has been shown [Thorpe et al., 1997. Proceedings of the Fourth International Conference on Bioreactor and Bioprocess Fluid Dynamics; Lee, 1998. Ph.D Thesis, University of Cambridge, UK], that the length of the cavity can be reduced by replacing the common industrial design of a horizontal sparger (HS) with two novel spargers; a peripheral sparger (PS) and a plunging jet sparger (PJS) (Fig. 3). In this paper we investigate the effect of PS and PJS on mass transfer and the resulting bubble size.Experiments were carried out with air and water in a large circulating rig with a 0.105 m diameter test section. The local average bubble size in the bulk two-phase flow region below the ventilated cavity was determined using photography for three combinations of liquid and gas volumetric flow rates. The average bubble size was essentially the same (differences within 10%) for the PS, central spranger (CS) and HS. The PS created the largest bubble in all cases examined. The PJS created smaller bubbles than all the other spargers and did not allow the formation of cavities, which suggests that it has the superior performance. The estimated increase in kLa due to the smaller bubble size for the PJS was by a factor of 1.3.In order to check this result, the effects of sparger type on the volumetric mass transfer coefficient (kLa) were also measured. The kLa was determined with a dynamic method, by using unsteady state absorption of oxygen. The results confirmed the apparent superiority of PJS over the other spargers. An average increase of 19% in the kLa was observed when the PJS was used instead of the industrial design (HS). The CS and PS showed similar kLa values again within 10% of the HS.However the power consumption is larger when the PJS is used instead of the industrial design HS. Hence an attempt was made to adjust the bubble size and mass transfer coefficients of the PJS to account for the differences in energy consumption. When this is done the PJS and HS produce roughly the same bubble size and have the same mass transfer performance. Still the PJS had the important operational advantages of producing shorter cavities and having the greater resistance to stall at low liquid flow rates.  相似文献   

6.
The effects of gas distributor height and the orientation of its orifices are investigated on solids dispersion and gas holdup profiles in a three-phase slurry bubble column. The height of the distributor was varied to cover locations from near column bottom to above the settled solids bed height. The orifice orientations were changed from upward facing to downwards facing directions. The measurements were conducted in a Plexiglas column of 0.15 m ID and 2.5 m height. The gas phase was oil-free compressed air while tap water was used as liquid phase. Glass beads with an average particle diameter of 35 μm and density of 2450 kg/m3 constituted the solid phase. The settled bed height was about 0.4 m which provided an average slurry concentration of about 15% (v/v) when all solids were dispersed. Both axial and column average phase holdups were measured. Effects of sparger location, gas jets formation and liquid circulation patterns on gas holdups and solids dispersion are analyzed. Empirical correlations are developed to relate sparger location to solids dispersion as a function of gas velocity. Optimum sparger height and orifice orientation is proposed based on the measurement of this study.  相似文献   

7.
BACKGROUND: Bubble columns (BCs) and airlift reactors (ALRs) have important applications as bioreactors, chemical reactors and as contactors in waste‐water treatment. The liquid phase properties in these reactors significantly influence the main hydrodynamic and mass transfer characteristics. Dilute alcohol solutions can be used to simulate real industrial systems in bioreactors. However, only a few research studies have considered such systems. The aim of this paper is to broaden the existing experimental data related to the influence of alcohol addition on the main characteristics of draft tube airlift reactors (DT‐ALRs), and to propose simple correlations for their prediction. RESULTS: New experiments were conducted in a DT‐ALR with a single orifice sparger, and with dilute aliphatic alcohol solutions from methanol to n‐octanol. Also, simple correlations were developed to predict the gas hold‐up and volumetric mass transfer coefficients in BCs and DT‐ALRs, but also the downcomer liquid velocity and liquid circulation time DT‐ALRs with single orifice sparger and dilute alcohol solutions. The proposed correlations included, in addition to the superficial gas velocity, the surface tension gradient as the only factor to characterize the liquid phase. CONCLUSIONS: General conclusion can be made that the gas holdup increased, but the downcomer liquid velocity decreased in a DT‐ALR, with increase in surface tension gradient of the alcohol solutions. Also, very good agreement was achieved between experimental and calculated data, by applying the developed correlations, with relative average errors less than 5%, except for gas hold‐up, where it was in the range 8–32%. Copyright © 2009 Society of Chemical Industry  相似文献   

8.
The multi-orifice plate gas sparger, mainly composed of a multi-orifice plate and a gas chamber, is one of the most common sparger facilities. The aeration performance of multi-orifice plate has a close relation with the multi-orifice plate configuration. In addition, the weeping phenomenon has a considerable influence on the gas chamber condition which affects the bubble detachment volume directly. This paper conducts a set of visual experiments to study the influence of multi-orifice configuration and gas chamber condition on the aeration performance of gas sparger. For multi-orifice plate, an improved theoretical model is proposed which considers the wave effect of the previous bubbles generated from adjacent orifices and the variance of the number of active bubbling orifice. A parameter is proposed to evaluate the aeration performance in order to overcome the difficulty caused by the randomness of bubble formation process. The experimental results suggest that the gas chamber filled with water is in favor of large bubble formation. The influence of the pitch of orifice on aeration performance can only be observed in high-restricted case. According to the theoretical model and experimental results, the influences of gas flow rate and the number of open orifices on the aeration performance are analyzed and a design criterion for the number of open orifice is proposed.  相似文献   

9.
The gas and solid mixing in fluid catalytic cracking strippers with and without internals were investigated using computational fluid dynamics simulations. The Eulerian–Eulerian two‐fluid model coupled with the modified Gidaspow drag model was used to simulate the gas‐solid flow behavior. The grid independency study and the comparison of 2D and 3D simulations were carried out first. The residence time distribution model and axial dispersion model were utilized to obtain the parameters indicating the back‐mixing degree, such as mean residence time, dimensionless variance and Peclet number of gas and solids. Moreover, the influence of bubble size and gas/solid flow distribution on the mass transfer between the bubble and emulsion phase were also analyzed. The results show that the baffles in the V‐baffle stripper can efficiently enhance the gas and solids mixing, reduce the back‐mixing degree of gas and solids, strengthen the mass transfer between the bubble and emulsion phase, and hence improve the stripping efficiency. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

10.
Bubble columns are widely used for conducting gas–liquid and gas–liquid–solid mass transfer/chemical reactions. Sparger is the most important accessory because it decides the bubble size/rise velocity distribution. These, in turn, govern the radial and axial hold-up profiles, the liquid phase flow pattern and hence the performance of bubble columns. In particular, the sparger design is critical if the aspect ratio is low and the sparger design dominates the performance of the bubble column. However, systematic procedure for the selection of sparger design and type are not available in the published literature. This is the specific objective of the present work. In Part I, the performance of different spargers, including the newly developed wheel type of sparger is discussed. Thus the important considerations required for the sparger design are highlighted. The bubble column used in the manufacture of hydrogen peroxide has been considered as a case for illustration.  相似文献   

11.
The impact of sparger design and surfactant addition on the oxygen transfer rate in a bubble column was examined. Additionally, measurements were also made of the holdup and bubble size distribution, allowing both the interfacial area for mass transfer and the liquid film mass transfer coefficient to be determined for a range of industrially relevant superficial velocities. It was found that for the velocity range examined changes in the superficial velocity had a minimal impact on the observed value of liquid film mass transfer coefficient. In contrast, addition of both hydrophilic and hydrophobic surface‐active compounds led to an approximately threefold reduction in liquid film mass transfer coefficient.  相似文献   

12.
Computational fluid dynamics (CFD) was used to simulate the effect of sparger construction in gas holdup and liquid axial velocity in a shallow bubble column reactor for the air‐water system. Model parameters were evaluated in 2‐ and 3‐D simulations by using a two‐fluid model and the standard k‐? turbulence model. The Eulerian‐Eulerian approach was employed to predict the height of column that is affected by the sparger. It was found that increasing the number of orifices in the sparger increases the total gas holdup. Moreover, each orifice causes an increase in the circulation and mixing of liquid in the column. The results of the simulations follow the trends observed in the findings of Dhotre and Joshi [1].  相似文献   

13.
Bubble formation from an orifice submerged in quiescent polyacrylamide aqueous solution was investigated numerically with a sharp‐interface coupled level‐set/volume‐of‐fluid method based on the rheological characteristics of the fluid. In both non‐Newtonian fluids and Newtonian fluids, the numerical approach was able to capture accurately the deformation of the bubble surface, validated by comparison with experimental results. The effects of orifice diameter, solution mass concentration, and gas flow rate on bubble volume and aspect ratio were evaluated. Both the instantaneous and detached volume decrease with the orifice diameter but increase with mass concentration and gas flow rate. The aspect ratio at the departing point tends to rise with the orifice diameter and mass concentration and falls with the gas flow rate.  相似文献   

14.
为了解浆态床鼓泡反应器中气含率的分布规律,在浆态床鼓泡反应器冷模试验装置中,以空气-液体石蜡-氧化铝微球为试验介质对装置内部的气含率进行研究。利用压差法研究了表观气速、浆液固含量等操作条件对反应器床层总体气含率的影响,利用光纤探针法研究了浆态床反应器不同操作条件对局部气含率的影响,总结了反应器内部气含率的分布规律,并由此对工业浆态床鼓泡反应器的设计进行了研究。结果表明:浆态床反应器的总体气含率随表观气速的增大而增大,固体细颗粒的加入能适当降低总体气含率;在反应器底部,分布器对气体的均布作用明显,但表观气速的增大能够弱化分布器的作用;在反应器的中上部气含率不受分布器的影响,沿反应器径向呈现"中间高,边缘低"的分布趋势;在工业费托浆态床中,表观气速不宜低于0.12 m/s,内过滤系统适宜设置于反应器中上部靠近器壁的位置。  相似文献   

15.
Slurry bubble columns are widely used in biotechnology. Therefore, the effects of solid particles on fluidization characteristics, gas hold-up and volumetric liquid-side mass transfer coefficient were measured in a slurry bubble column (i.d. 0.14 m). The density and diameter of the suspended particles were similar to those applied in biotechnology with immobilized bacteria. Based on models of turbulence and of liquid circulation induced by rising gas bubbles, equations for critical gas velocity, gas hold-up and volumetric liquid-side mass transfer coefficient were obtained by dimensional analysis.  相似文献   

16.
The understanding of the effect of impeller‐sparger configurations on gas dispersion and mass transfer is very important to improve the performance of gas/liquid contactor systems. The influence of the impeller positions, the upper turbine diameter, the sparger ring diameter and its location in regard to the lower impeller on the power consumption, the volumetric mass‐transfer coefficient and the overall oxygen transfer efficiency were studied in a nonstandard curved bottomed reactor with an agitated system with dual disk style turbines. In the range of the gas flow rates studied, the most efficient impeller‐sparger arrangement for the oxygen transfer is the impeller system with turbines of different diameters located at C = 0.25 and IC = 0.5, and with the sparger of smaller diameter than the lower impeller settled below the impeller. A new model to estimate the kLa with an average relative error of 8 %, which takes the reactor operation conditions and the influence of the impeller‐sparger geometry into account, was also proposed.  相似文献   

17.
The local hydrodynamic properties of the gas phase in an internal-loop airlift reactor were investigated in this study. The hydrodynamic properties including gas holdup, bubble velocity and bubble chord length were measured by dual electrical resistivity probes. The chord length distribution was then transformed to the bubble size distribution by modeling the bubbles as ellipsoids. It was found that the gas holdup increased with decreasing bubble velocity. In addition, most bubbles tended to rise along the riser central axis. Thus, the gas holdup in the axis was higher. The bubble size, bubble velocity and gas holdup were relatively constant in the axial direction of the riser except in the zones near the gas sparger and the gas–liquid separator. The bubble velocity became slower when the bubbles approached the gas–liquid separator. Moreover, the bubble size and bubble velocity for the three-phase system were relatively insensitive to the radial direction compared to those for the two-phase system. It was also found in this study that the bubble rise velocity and bubble size for the three-phase system were lower than that for the two-phase system. However, the gas holdup for the three-phase system were higher than that for the two-phase system due to bubble breakage caused by the solid particles.  相似文献   

18.
The effect of gas sparger type, clear liquid height, liquid viscosity and addition of electrolyte on fractional gas hold-up in a 0.38 m i.d. sectionalised bubble column (SBC) was studied for superficial gas velocities ranging from 0.03 to 0.15 m s−1. A study of the wall side solid–liquid mass transfer coefficient, kSL, has been made by considering the dissolution of copper in acidic dichromate solutions. The variation of kSL with axial distance in a section for different gas velocities has been explained. A comparison between the performance of sectionalised bubble columns and conventional bubble columns has been presented. In some cases, the SBC may prove to be superior to bubble columns in practice.  相似文献   

19.
The gas‐liquid mass transfer behavior of syngas components, H2 and CO, has been studied in a three‐phase bubble column reactor at industrial conditions. The influences of the main operating conditions, such as temperature, pressure, superficial gas velocity and solid concentration, have been studied systematically. The volumetric liquid‐side mass transfer coefficient kLa is obtained by measuring the dissolution rate of H2 and CO. The gas holdup and the bubble size distribution in the reactor are measured by an optical fiber technique, the specific gas‐liquid interfacial area aand the liquid‐side mass transfer coefficient kL are calculated based on the experimental measurements. Empirical correlations are proposed to predict kL and a values for H2 and CO in liquid paraffin/solid particles slurry bubble column reactors.  相似文献   

20.
The gas–liquid volumetric mass transfer coefficient was determined by the dynamic oxygen absorption technique using a polarographic dissolved oxygen probe and the gas–liquid interfacial area was measured using dual‐tip conductivity probes in a bubble column slurry reactor at ambient temperature and normal pressure. The solid particles used were ultrafine hollow glass microspheres with a mean diameter of 8.624 µm. The effects of various axial locations (height–diameter ratio = 1–12), superficial gas velocity (uG = 0.011–0.085 m/s) and solid concentration (εS = 0–30 wt.%) on the gas–liquid volumetric mass transfer coefficient kLaL and liquid‐side mass transfer coefficient kL were discussed in detail in the range of operating variables investigated. Empirical correlations by dimensional analysis were obtained and feed‐forward back propagation neural network models were employed to predict the gas–liquid volumetric mass transfer coefficient and liquid‐side mass transfer coefficient for an air–water–hollow glass microspheres system in a commercial‐scale bubble column slurry reactor. © 2012 Canadian Society for Chemical Engineering  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号