首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The modification of Ni/CeO2/Al2O3 with Pt can make the activation by H2 reduction unnecessary, and this indicates that the Pt/Ni/CeO2/Al2O3 catalyst can be activated automatically by the compounds contained in tar. This can be explained by the enhancement of the Ni reducibility by the addition of Pt. The results of the temperature programmed reduction with H2 also support this enhancement. Furthermore, the addition of 0.1% Pt to Ni/CeO2/Al2O3 (4 wt% Ni, 30 wt% CeO2) enhanced the performance in the steam gasification of biomass, compared to Ni/Al2O3 and Ni/CeO2/Al2O3 in terms of low tar yield and high gas yield. This can be related to the Pt–Ni alloy formation indicated by the extended X-ray absorption fine structure analysis.  相似文献   

2.
Different Pt‐based catalyst layers have been prepared and tested in a stacked foil microreactor for CO oxidation and preferential oxidation of CO in presence of hydrogen. The reactions were performed on Pt without support by impregnation of a pre‐oxidized microstructured metal plate, Pt/Al2O3 and Pt/CeO2 based on sol methods as well as Pt/nano‐Al2O3, a combined method of sol‐gel and nanoparticle slurry coating. The ceria based sol‐gel catalyst was much more active for CO oxidation than alumina based sol‐gel catalysts at low temperature. However, total oxidation was only obtained at higher temperature on the alumina based catalysts. The combined method seems to have advantages in terms of less internal mass transfer limitation when trying to increase the catalyst coating thickness based on sol‐gel approaches due to no reduction of CO selectivity up to 300 °C reaction temperature. Experiments on CO oxidation with the Pt/CeO2 catalyst have been conducted in an oxygen supply microreactor to evaluate the catalyst performance under sequential oxygen supply to reaction zone (CO excess).  相似文献   

3.
Hydrogen production from ethanol reforming was investigated on bimetallic PtNi catalysts supported on CeO2/Al2O3. Pt content was varied from 0.5 to 2.5 %. Physico-chemical characterization of the as-prepared and H2-reduced catalysts by TPR, XRD and XPS showed that Pt phase interacted with the Ni and Ce species present at the surface of the catalysts. This interaction leads to an enhancement of the reducibility of both Ni and Ce species. Loadings of Pt higher than 1.0 wt% improved the activity and stability of the Ni/CeO2–Al2O3 catalyst in ethanol steam reforming, in terms of lower formation of coke, C2 secondary products and a constant production of CO2 and H2. The amount and type of carbon deposited on the catalyst was analyzed by TG–TPO while the changes in crystalline phases after reaction were studied by XRD. It was found that for Pt contents higher than 1 wt% in the catalysts, a better contact between Pt and Ce species is achieved. This Pt–Ce interaction facilitates the dispersion of small particles of Pt and thereby improves the reducibility of both Ce and Ni components at low temperatures. In this type of catalysts, the cooperative effect between Pt0, Ni0 and reduced Ce phases leads to an improvement in the stability of the catalysts: Ni provides activity in C–C bond breakage, Pt particles enhance the hydrogenation of coke precursors (CxHy) formed in the reaction, and Ce increases the availability of oxygen at the surface and thereby further enhances the gasification of carbon precursors.  相似文献   

4.
The ethanol steam reforming has been investigated over supported cobalt catalysts at atmospheric pressure. About 12% cobalt was supported on Al2O3, SiO2 and TiO2, and a commercial Ni/Al2O3 catalyst (G90B) was included for comparative purposes. The selectivity was found to depend strongly on the support, especially at low and medium temperatures. The initial activity of the cobalt catalysts correlated well with the metal dispersion. Acetaldehyde was an important C-containing product at low temperatures, whereas at high temperatures CO, CO2 and CH4 dominated the product spectrum. A significant production of ethene was observed, especially on the alumina-supported catalysts. The results are in agreement with a mechanism involving acetaldehyde as an intermediate in the steam reforming. At high temperatures (>550 °C) the conversion was complete and the product distribution approaches the equilibrium. The H2 yield approached 5 moles H2/mole ethanol converted, which is close to the maximum according to thermodynamic calculations. The alumina-supported catalysts (both Co and Ni) showed acceptable deactivation rates, but high carbon formation.  相似文献   

5.
Catalytic performance of Ni/CeO2/Al2O3 catalysts prepared by a co-impregnation and a sequential impregnation method in steam gasification of real biomass (cedar wood) was investigated. Especially, Ni/CeO2/Al2O3 catalysts prepared by the co-impregnation method exhibited higher performance than Ni/Al2O3 and Ni/CeO2/Al2O3 prepared by the sequential impregnation method, and the catalysts gave lower yields of coke and tar, and higher yields of gaseous products. The Ni/CeO2/Al2O3 catalysts were characterized by thermogravimetric analysis, temperature-programmed reduction with H2, transmission electron microscopy and extended X-ray absorption fine structure, and the results suggested that the interaction between Ni and CeO2 became stronger by the co-impregnation method than that by sequential method. Judging from both results of catalytic performance and catalyst characterization, it is found that the intimate interaction between Ni and CeO2 can play very important role on the steam gasification of biomass.  相似文献   

6.
A bubbling fluidized‐bed gasification system was selected for catalytic steam gasification of rice straw with four Ni‐based catalysts, i.e., Ni/Al2O3, Ni/CeO2, Ni/MnO2, and Ni/MgO. The effect of temperature, steam/biomass ratio (S/B), and catalyst/biomass ratio (C/B) on the gas composition, char conversion, and hydrogen yield was evaluated. It was found that higher temperature and S/B promote hydrogen production and char conversion. The results also demonstrated that the catalytic activity of Ni/Al2O3 under different S/B values is better than those of the other catalysts. Regarding the catalyst activity, all four catalysts exhibited good performance in terms of tar removal and carbon conversion. However, the performance of Ni/Al2O3 was superior to that of the other three catalysts.  相似文献   

7.
Palladium-based catalysts have been developed for the diesel exhaust system with an emphasis on their sulphur tolerance during the simultaneous oxidation of CO and HC. Promising materials include Au–Pd–Pt, Co–Pd–Pt and Ni–Pd–Pt supported on Al2O3 or TiO2 and Pd–Pt/MoO3–Al2O3 with the Al2O3 support modified with MoO3 monolayer.  相似文献   

8.

Abstract  

To develop an efficient catalyst for steam reforming of propane, Ni/LaAlO3 catalysts were prepared by deposition precipitation, impregnation, and solvo-thermal methods, and characterized by XRD, BET, H2-TPR, elemental analyses, and TEM. Ni/Al2O3 and Ni/CeO2 catalysts were also synthesized by the solvo-thermal method for comparison. The Ni/LaAlO3 catalysts exhibited better catalytic performance than both Ni/Al2O3 and Ni/CeO2 catalysts, and activities with Ni/LaAlO3 were found to be dependent upon the preparation methods. In particular, the Ni/LaAlO3 catalyst synthesized by the solvo-thermal method exhibited the highest activity presumably because tetrahydrofuran helps distribute generated Ni nanoparticles onto the catalyst surface in a uniform fashion. In addition, the solvo-thermally prepared Ni/LaAlO3 catalyst was found to be highly stable, with its activity being maintained at least during 100 h. The observed high stability is attributed to the excellent oxygen storage capacity of LaAlO3, which was first determined by thermogravimetric methods as well as by soot oxidations in the presence of Al2O3, CeO2, and LaAlO3. Compared to the Ni/Al2O3 and Ni/CeO2 catalysts, Ni/LaAlO3 exhibited suppressed carbon formation even at lower S/C ratios due to the superior oxygen transport ability of the LaAlO3 support.  相似文献   

9.
《Applied catalysis》1989,46(2):269-279
In this work the catalytic properties of nickel supported on various supports (Al2O3, SiO2, CeO2) in syngas conversion are compared. The influence of the temperature of reduction pretreatment was studied. The characterization of the catalysts was performed by temperature programmed reduction, isothermal reduction, CO and H2 chemisorption, X-ray diffraction, X-ray absorption spectroscopy, magnetization and X-ray photoelectron spectroscopy. The modification of the catalytic properties of Ni/CeO2 catalysts with reduction pretreatment is correlated to the transformation of the CeO2 support and to strong interactions between these species and metal particles.  相似文献   

10.
The effect of support type on synthesis gas production using Co‐based catalysts supported over TiO2‐P25, Al2O3, SiO2, and CeO2 was investigated. The catalysts were prepared by the incipient wet impregnation method and characterized by various techniques for comparison. Experiments were performed in a micro tubular reactor. The results revealed that all Co‐supported catalysts produced synthesis gas ratios of 1 and below and, thus, proved to be well‐suited for methanol and Fischer‐Tropsch syntheses. Co catalysts supported over TiO2‐P25 and Al2O3 provided better synthesis gas ratios and stability performances. The promotion of a Co/TiO2‐P25 catalyst with Ce had a substantial influence on its catalytic activity and the amount of carbon deposit. A Ce‐promoted catalyst diminished markedly the extent of carbon deposition and thus boosted the performance towards better activity and stability.  相似文献   

11.
1% Pt/Al2O3 and 1% Pt/CeO2 are markedly activated by the deposition of a large quantity of FeO x , about 100 wt% in Fe with respect to the supports. In contrast, the activity of a Ru/Al2O3 catalyst was completely suppressed by the deposition of FeO x , but a Ru-Pt/Al2O3 was markedly activated by the FeO x . The activation depends on the sequence of the deposition, that is, no pronounced activation was observed on the Pt supported on a FeO x /Al2O3 as well as on the Pt codeposited with a small amount of Fe on Al2O3, that is, the activity was almost equal to that of the Pt/Al2O3. The XPS analysis of the Pt/CeO2 and FeO x /Pt/CeO2 proved that the Pt is effectively covered with the FeO x . Selectivity for the oxidation of CO in H2 was also improved on the FeO x /Pt/Al2O3 and FeO x /Pt/CeO2 catalysts and it is rather independent of the conversion. In conformity with the feature of the FeO x /Pt/Al2O3 and FeO x /Pt/CeO2 catalysts, we deduced that the deposited FeO x is activated by the Pt and the FeO x is responsible for the selective oxidation of CO.  相似文献   

12.
Autothermal reforming (ATR) of methane was carried out over nanocrystalline Al2O3‐supported Ni catalysts with various Ni loadings. Mesoporous nanocrystalline γ‐Al2O3 powder with high specific surface area was prepared by the sol‐gel method and employed as support for the nickel catalysts. The prepared samples were characterized by X‐ray diffraction, Brunauer‐Emmett‐Teller, temperature‐programmed reduction, temperature‐programmed hydrogenation, and scanning electron microscopy techniques. It is demonstrated that the methane conversion increased with increasing in Ni content and that the catalyst with 25 wt % Ni exhibited the highest activity and a stable catalytic performance in the ATR process, with a low degree of carbon formation. Furthermore, the effects of the reaction temperature, the calcination temperature, the steam/CH4 and O2/CH4 ratios, and the gas hourly space velocity on the catalytic performance of the 25 % Ni/Al2O3 catalyst were investigated.  相似文献   

13.
Selective CO oxidation in the presence of excess hydrogen was studied over supported Pt catalysts promoted with various transition metal compounds such as Cr, Mn, Fe, Co, Ni, Cu, Zn, and Zr. CO chemisorption, XRD, TPR, and TPO were conducted to characterize active catalysts. Among them, Pt-Ni/γ-Al2O3 showed high CO conversions over wide reaction temperatures. For supported Pt-Ni catalysts, Alumina was superior to TiO2 and ZrO2 as a support. The catalytic activity at low temperatures increased with increasing the molar ratio of Ni/Pt. This accompanied the TPR peak shift to lower temperatures. The optimum molar ratio between Ni and Pt was determined to be 5. This Pt-Ni/γ A12O3 showed no decrease in CO conversion and CO2 selectivity for the selective CO oxidation in the presence of 2 vol% H2O and 20 vol% CO2. The bimetallic phase of Pt-Ni seems to give rise to stable activity with high CO2 selectivity in selective oxidation of CO in H2-rich stream.  相似文献   

14.
Selective methanation of CO over supported Ru catalysts   总被引:1,自引:0,他引:1  
The catalytic performance of supported ruthenium catalysts for the selective methanation of CO in the presence of excess CO2 has been investigated with respect to the loading (0.5–5.0 wt.%) and mean crystallite size (1.3–13.6 nm) of the metallic phase as well as with respect to the nature of the support (Al2O3, TiO2, YSZ, CeO2 and SiO2). Experiments were conducted in the temperature range of 170–470 °C using a feed composition consisting of 1%CO, 50% H2 15% CO2 and 0–30% H2O (balance He). It has been found that, for all catalysts investigated, conversion of CO2 is completely suppressed until conversion of CO reaches its maximum value. Selectivity toward methane, which is typically higher than 70%, increases with increasing temperature and becomes 100% when the CO2 methanation reaction is initiated. Increasing metal loading results in a significant shift of the CO conversion curve toward lower temperatures, where the undesired reverse water–gas shift reaction becomes less significant. Results of kinetic measurements show that CO/CO2 hydrogenation reactions over Ru catalysts are structure sensitive, i.e., the reaction rate per surface metal atom (turnover frequency, TOF) depends on metal crystallite size. In particular, for Ru/TiO2 catalysts, TOFs of both CO (at 215 °C) and CO2 (at 330 °C) increase by a factor of 40 and 25, respectively, with increasing mean crystallite size of Ru from 2.1 to 4.5 nm, which is accompanied by an increase of selectivity to methane. Qualitatively similar results were obtained from Ru catalysts supported on Al2O3. Experiments conducted with the use of Ru catalyst of the same metal loading (5 wt.%) and comparable crystallite size show that the nature of the metal oxide support affects significantly catalytic performance. In particular, the turnover frequency of CO is 1–2 orders of magnitude higher when Ru is supported on TiO2, compared to YSZ or SiO2, whereas CeO2- and Al2O3-supported catalysts exhibit intermediate performance. Optimal results were obtained over the 5%Ru/TiO2 catalyst, which is able to completely and selectively convert CO at temperatures around 230 °C. Addition of water vapor in the feed does not affect CO hydrogenation but shifts the CO2 conversion curve toward higher temperatures, thereby further improving the performance of this catalyst for the title reaction. In addition, long-term stability tests conducted under realistic reaction conditions show that the 5%Ru/TiO2 catalyst is very stable and, therefore, is a promising candidate for use in the selective methanation of CO for fuel cell applications.  相似文献   

15.
The origin of CO oxidation performance variations between three different supported Au catalysts (Au/CeO2, Au/Al2O3, Au/TiO2) was examined by in situ XAFS and DRIFTS measurements. All samples were prepared identically, by deposition-precipitation of an aqueous Au(III) complex with urea, and contained the same gold loading (~1 wt %). The as-prepared supported Au(III) precursors exhibited different reduction behaviour during exposure to the CO/O2/He reaction mixture at 298 K. The reducibility of the Au(III) precursor was found to decrease as a function of the support material in the order: titania > ceria > alumina. The as-prepared samples were inactive catalysts, but Au/TiO2 and Au/CeO2 developed catalytic activity as the reduction of Au(III) to metallic Au proceeded. Au/Al2O3 remained inactive. The developed catalytic CO oxidation activity at 298 K varied as a function of the support as follows: titania > ceria > alumina ~ 0. The EXAFS of samples pretreated in air at 773 K and in H2 at 573 K reveals the presence of only metallic particles for Au/TiO2 and Au/Al2O3. Au(III) supported on CeO2 remains unreduced after calcination, but reduces during the treatment with H2. CO oxidation experiments performed at 298 K with the activated samples show that the presence of metallic gold is necessary to obtain active catalysts (Au/CeO2 is not active after calcination) and that the reducible supports facilitate the genesis of active catalysts, while metallic gold particles on alumina are not active.  相似文献   

16.
We have investigated the low-temperature activity for CO oxidation for a series of platinum catalysts supported on Al2O3, TiO2, ZSM-5, CeO2 and ZrO2-CeO2. The results show major differences in activity, due to the support for Pt, especially in the presence of water. Improved activity over ceria containing samples in presence of water is likely due to the water-gas shift (WGS) reaction. Studies with in situ IR spectroscopy suggest a surface formate mechanism for the WGS reaction on Pt/CeO2.  相似文献   

17.
Hydrogen production was carried out via ethanol steam reforming over supported cobalt catalysts. Wet incipient impregnation method was used to support cobalt on ZrO2, CeO2 and CeZrO4 followed by pre-reduction with H2 up to 677 °C to attain supported cobalt catalysts. It was found that the non-noble metal based 10 wt.% Co/CeZrO4 is an efficient catalyst to achieve ethanol conversion of 100% and hydrogen yield of 82% (4.9 mol H2/mol ethanol) at 450 °C, which is superior to 0.5 wt.% Rh/Al2O3. The pre-reduction process is required to activate supported cobalt catalysts for high H2 yield of ethanol steam reforming. In addition, support effect is found significant for cobalt during ethanol steam reforming. 10% Co/CeO2 gave high H2 selectivity while suffered low conversion due to the poor thermal stability. In contrast to CeO2, 10 wt.% Co/ZrO2 achieved high conversion while suffered lower H2 yield due to the production of methane. The synergistic effect of ZrO2 and CeO2 to promote high ethanol conversion while suppress methanation was observed when CeZrO4 was used as a support for cobalt. This synergistic effect of CeZrO4 support leads to a high hydrogen yield at low temperature for 10 wt.% Co/CeZrO4 catalyst. Under the high weight hourly space velocity (WHSV) of ethanol (2.5 h−1), the hydrogen yield over 10 wt.% Co/CeZrO4 was found to gradually decrease to 70% of its initial value in 6 h possibly due to the coke formation on the catalyst.  相似文献   

18.
Aqueous-phase reforming of 10 wt% ethylene glycol solutions was studied at temperatures of 483 and 498 K over Pt-black and Pt supported on TiO2, Al2O3, carbon, SiO2, SiO2-Al2O3, ZrO2, CeO2, and ZnO. High activity for the production of H2 by aqueous-phase reforming was observed over Pt-black and over Pt supported on TiO2, carbon, and Al2O3 (i.e., turnover frequencies near 8-15 min-1 at 498 K); moderate catalytic activity for the production of hydrogen is demonstrated by Pt supported on SiO2-Al2O3 and ZrO2 (turnover frequencies near 5 min-1); and lower catalytic activity is exhibited by Pt supported on CeO2, ZnO, and SiO2 (H2 turnover frequencies lower than about 2 min-1). Pt supported on Al2O3, and to a lesser extent ZrO2, exhibits high selectivity for production of H2 and CO2 from aqueous-phase reforming of ethylene glycol. In contrast, Pt supported on carbon, TiO2, SiO2-Al2O3 and Pt-black produce measurable amounts of gaseous alkanes and liquid-phase compounds that would lead to alkanes at higher conversions (e.g., ethanol, acetic acid, acetaldehyde). The total rate of formation of these byproducts is about 1-3 min-1 at 498 K. An important bifunctional route for the formation of liquid-phase alkane-precursor compounds over less selective catalysts involves dehydration reactions on the catalyst support (or in the aqueous reforming solution) followed by hydrogenation reactions on Pt.  相似文献   

19.
This paper presents a performance analysis of a dual-bed autothermal reformer for hydrogen production from methane using a non-isothermal, one dimensional reactor model. The first section of Pt/Al2O3 catalyst is designed for oxidation reaction, whereas the second one based on Ni/MgAl2O4 catalyst involves steam reforming reaction. The simulation results show that the dual-bed autothermal reactor provides higher reactor temperature and methane conversion compared with a conventional fixed-bed reformer. The H2O/CH4 and O2/CH4 feed ratios affect the methane conversion and the H2/CO product ratio. The addition of steam at lower temperatures to the steam reforming section of the dual-bed reactor can produce the synthesis gas with a higher H2/CO product ratio.  相似文献   

20.
Medium‐temperature shift reaction (MTS, 280–340 °C) has received much attention for use in fuel processors. In this study, bifunctional Pt‐Ni/CeO2 catalysts were prepared by different Pt (0.1–0.5 %) and Ni (5–20 %) loadings, and investigated for MTS reaction. X‐ray diffraction, N2 adsorption and temperature‐programmed reduction tests were used to characterize the prepared samples. The results showed that Pt‐Ni bimetallic catalysts have higher CO conversion in comparison to Pt/CeO2 monometallic catalyst. Furthermore, the sequential synthesis method of Pt and Ni impregnation was preferred to the simultaneous one, which is due to the better Pt dispersion on catalytic surface. Steam to carbon ratio variations study showed the maximum CO conversion to be in the range of 4.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号