首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
With the aim to enhance the CO2 capture capacity and anti‐attrition property of CaO‐based sorbents simultaneously, a novel CaO‐based sphere was prepared by extrusion‐spheronization using Ca(OH)2 powder with glucose templating. The CO2 capture characteristics and attrition resistance property of the sorbent were examined and the microstructure of the sorbents was analyzed. The results demonstrate that the obtained spherical sorbents exhibit an outstanding anti‐attrition performance compared to limestone sorbent. After 100 cycles, all of the templated sorbents hold a CO2 capture capacity of more than one time higher than that of limestone. The optimum templating rate of glucose in the sorbent was 1–5 wt %.  相似文献   

2.
An engineered process for scalable manufacture of a calcium aluminum carbonate CO2 sorbent with production amounts of about 1000 g per hour has been developed. The process includes mixing and heating, solid‐liquid separation, drying and extrusion, crushing and conveying, and calcined molding steps. The sorbent preparation involves the coprecipitation of Ca2+, Al3+, and CO32– under alkaline conditions. By adjusting the Ca:Al molar ratio, a series of Ca‐rich materials could be synthesized for use as CO2 sorbents at 750 °C. A calcium acetate‐derived sorbent exhibited better cyclic stability than sorbents originating from CaCl2 and Ca(NO3)2. The initial sorption capacity increased with CaO concentration. High stability of more than 90 % was maintained by the Ca:Al sorbents after 40 looping tests.  相似文献   

3.
The sharp loss‐in‐capacity in CO2 capture as a result of sintering is a major drawback for CaO‐based sorbents used in the calcium looping process. The decoration of inert supports effectively stabilizes the cyclic CO2 capture performance of CaO‐based sorbents via sintering mitigation. A range of Al‐decorated and Al/Mg co‐decorated CaO‐based sorbents were synthesized via an easily scaled‐up spray‐drying route. The decoration of Al‐based and Al/Mg‐based supports efficiently enhanced the cyclic CO2 capture capability of CaO‐based sorbents under severe testing conditions. The CO2 capture capacity losses of Al‐decorated and Al/Mg co‐decorated CaO‐based sorbents were alleviated, representing more stable CO2 capture performance. The stabilized CO2 capture performance is mainly attributed to the formation of Ca12Al14O33, MgAl2O4, and MgO that act as the skeleton structures to mitigate the sintering of CaCO3 during carbonation/calcination cycles.  相似文献   

4.
CO2 capture systems based on the carbonation/calcination loop have gained rapid interest due to promising carbonator CO2 capture efficiency, low sorbent cost and no flue gases treatment is required before entering the system. These features together result in a competitively low cost CO2 capture system. Among the key variables that influence the performance of these systems and their integration with power plants, the carbonation conversion of the sorbent and the heat requirement at calciner are the most relevant. Both variables are mainly influenced by CaO/CO2 ratio and make-up flow of solids. New sorbents are under development to reduce the decay of their carbonation conversion with cycles. The aim of this study is to assess the competitiveness of new limestones with enhanced sorption behaviour applied to carbonation/calcination cycle integrated with a power plant, compared to raw limestone. The existence of an upper limit for the maximum average capture capacity of CaO has been considered. Above this limit, improving sorbent capture capacity does not lead to the corresponding increase in capture efficiency and, thus, reduction of CO2 avoided cost is not observed. Simulations calculate the maximum price for enhanced sorbents to achieve a reduction in CO2 removal cost under different process conditions (solid circulation and make-up flow). The present study may be used as an assessment tool of new sorbents to understand what prices would be competitive compare with raw limestone in the CO2 looping capture systems.  相似文献   

5.
The calcium‐looping process for post‐combustion carbon dioxide capture, an economically and technically feasible method suitable for large‐scale use, has recently gained much attention. However, the capture capacity of calcium‐based sorbents rapidly decreases after only a few cycles. Herein, calcium‐based sorbents with enhanced cyclic CO2‐capture capacity have been derived from cheap, natural raw materials by using a simple impregnation method. Limestone and shells were used as the calcium‐based raw materials, with sea salt as dopant. Modified limestone had the highest CO2‐capture capacity after multiple carbonation‐calcination cycles. Sea‐salt‐doped sorbent showed a relatively stable porous surface during cycles, which resulted in a higher CO2‐capture capacity.  相似文献   

6.
The synthesis of highly efficient CaO‐based sorbents using Ca(Ac)2 as a precursor and ethanol as a modification agent for CO2 capture is described. This adsorbent has several characteristics such as large surface area and pore volume and small particle size. The influence of ratio of ethanol and water on CO2 adsorption capacity was evaluated considering that the ethanol concentration could affect the pore structure of sorbents. The results showed that CaO modified by ethanol solution had a higher carbonization and better stability. Particularly, when the volume ratio of ethanol and water was 3, a performance of adsorption capacity of 74% and conversion of 94% was observed. CaO modified by ethanol solution had a superior performance due to the decrease of grain size and the formation of loose porous structure. The influence of steam on stability of adsorbents at high temperatures was examined, and it was found that with the existence of steam diffusion, the capacity of the sorbent could remain at a higher level and the stability was evidently improved. After 18 cycles of adsorption/desorption process, the capacity remained as high as 65%. It was proposed that dynamic and cyclic steam injection was favorable for preventing the sintering of sorbents and facilitating the diffusion of CO2. © 2013 American Institute of Chemical Engineers AIChE J, 59: 3586–3593, 2013  相似文献   

7.
The water gas shift reaction was evaluated in the presence of novel carbon dioxide (CO2) capture sorbents, both alone and with catalyst, at moderate reaction conditions (i.e., 300-600 °C and 1-11.2 atm). Experimental results showed significant improvements to carbon monoxide (CO) conversions and production of hydrogen (H2) when CO2 sorbents are incorporated into the water gas shift reaction. Results suggested that the performance of the sorbent is linked to the presence of a Ca(OH)2 phase within the sorbent. Promoting calcium oxide (CaO) sorbents with sodium hydroxide (NaOH) as well as pre-treating the CaO sorbent with steam appeared to lead to formation of Ca(OH)2, which improved CO2 sorption capacity and WGS performance. Results suggest that an optimum amount of NaOH exists as too much leads to a lower capture capacity of the resultant sorbent. During capture, the NaOH-promoted sorbents displayed a high capture efficiency (nearly 100%) at temperatures of 300-600 °C. Results also suggest that the CaO sorbents possess catalytic properties which may augment the WGS reactivity even post-breakthrough. Furthermore, promotion of CaO by NaOH significantly reduces the regeneration temperature of the former.  相似文献   

8.
To improve the stability of CaO adsorption capacity for CO2 capture during multiple carbonation/calcination cycles, modified CaO-based sorbents were synthesized by sol-gel-combustion-synthesis (SGCS) method and wet physical mixing method, respectively, to overcome the problem of loss-in-capacity of CaO-based sorbents. The cyclic CaO adsorption capacity of the sorbents as well as the effect of the addition of La2O3 or Ca12Al14O33 was investigated in a fixed-bed reactor. The transient phase change and microstructure were characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FSEM), respectively. The experimental results indicate that La2O3 played an active role in the carbonation/calcination reactions. When the sorbents were made by wet physical mixing method, CaO/Ca12Al14O33 was much better than CaO/La2O3 in cyclic CO2 capture performance. When the sorbents were made by SGCS method, the synthetic CaO/La2O3 sorbent provided the best performance of a carbonation conversion of up to 93% and an adsorption capacity of up to 0.58 g-CO2/g-sorbent after 11 cycles.  相似文献   

9.
A convenient water‐based sol‐gel technique was used to prepare a highly efficient lithium orthosilicate‐based sorbent (Li4SiO4‐G) for CO2 capture at high temperature. The Li4SiO4‐G sorbent was systematically studied and compared with the Li4SiO4‐S sorbent prepared by solid‐state reaction. Both sorbents were characterized by X‐ray diffraction, scanning electron microscopy, nitrogen adsorption, and thermogravimetry. The CO2 sorption stability was investigated in a dual fixed‐bed reactor. Li4SiO4‐G exhibited a special Li4SiO4 structure with smaller crystalline nanoparticles, larger surface area, and higher CO2 adsorption properties as compared with Li4SiO4‐S. The Li4SiO4‐G sorbent also maintained higher capacities during multiple cycles.  相似文献   

10.
Rice husk ash/CaO was proposed as a CO2 sorbent which was prepared by rice husk ash and CaO hydration together. The CO2 capture behavior of rice husk ash/CaO sorbent was investigated in a twin fixed bed reactor system, and its apparent morphology, pore structure characteristics and phase variation during cyclic carbonation/calcination reactions were examined by SEM-EDX, N2 adsorption and XRD, respectively. The optimum preparation conditions for rice husk ash/CaO sorbent are hydration temperature of 75 °C, hydration time of 8 h, and mole ratio of SiO2 in rice husk ash to CaO of 1.0. The cyclic carbonation performances of rice husk ash/CaO at these preparation conditions were compared with those of hydrated CaO and original CaO. The temperature at 660 °C–710 °C is beneficial to CO2 absorption of rice husk ash/CaO, and it exhibits higher carbonation conversions than hydrated CaO and original CaO during multiple cycles at the same reaction conditions. Rice husk ash/CaO possesses better anti-sintering behavior than the other sorbents. Rice husk ash exhibits better effect on improving cyclic carbonation conversion of CaO than pure SiO2 and diatomite. Rice husk ash/CaO maintains higher surface area and more abundant pores after calcination during the multiple cycles; however, the other sorbents show a sharp decay at the same reaction conditions. Ca2SiO4 found by XRD detection after calcination of rice husk ash/CaO is possibly a key factor in determining the cyclic CO2 capture behavior of rice husk ash/CaO.  相似文献   

11.
Used clamshells (Paphia undulata), as a precursor of calcium oxide (CaO) sorbents, were employed for carbon dioxide (CO2) adsorption in a bubbling fluidized‐bed reactor. To find the optimal calcination conditions, a 2k experimental design was used to vary the ground clamshell particle size, heating rate, and calcination time at 950 °C under a nitrogen atmosphere. The heating rate was the most significant factor affecting the CO2 adsorption capacity of the obtained CaO sorbent. The maximum CO2 adsorption capacity of the CaO obtained under these study conditions was higher than that of commercial CaO.  相似文献   

12.
Calcium looping is an energy‐efficient CO2 capture technology that uses CaO as a regenerable sorbent. One of the advantages of Ca‐looping compared with other postcombustion technologies is the possibility of operating with flue gases that have a high SO2 content. However, experimental information on sulfation reaction rates of cycled particles in the conditions typical of a carbonator reactor is scarce. This work aims to define a semiempirical sulfation reaction model at particle level suitable for such reaction conditions. The pore blocking mechanism typically observed during the sulfation reaction of fresh calcined limestones is not observed in the case of highly cycled sorbents (N > 20) and the low values of sulfation conversion characteristic of the sorbent in the Ca‐looping system. The random pore model is able to predict reasonably well, the CaO conversion to CaSO4 taking into account the evolution of the pore structure during the calcination/carbonation cycles. The intrinsic reaction parameters derived for chemical and diffusion controlled regimes are in agreement with those found in the literature for sulfation in other systems. © 2011 American Institute of Chemical EngineersAIChE J, 2012  相似文献   

13.
The calcium‐based sorbent cyclic calcination/carbonation reaction is an effective technique for capturing CO2 from combustion processes. The CO2 capture capacity for CaO modified with ethanol/water solution was investigated over long‐term calcination/carbonation cycles. In addition, the SEM micrographs and pore structure for the calcined sorbents were analyzed. The carbonation conversion for CaO modified with ethanol/water solution is greater than that for CaO hydrated with distilled water and is much higher than that for calcined limestone. Modified CaO achieves the highest conversion for carbonation at the range of 650–700 °C. Higher values of ethanol concentration in solution result in higher carbonation conversion for modified CaO, and lead to better anti‐sintering performance. After calcination, the specific surface area and pore volume for modified CaO are higher than those for hydrated CaO, and are much greater than those for calcined limestone. The ethanol molecule enhances H2O molecule affinity and penetrability to CaO in the hydration reaction so that the pores in CaO modified are obviously expanded after calcination. CaO modified with ethanol/water solution can act as a new and promising type of calcium‐based regenerable CO2 sorbent for industrial applications.  相似文献   

14.
Potassium carbonate supported on alumina is used as a solid sorbent for CO2 capture at low temperatures. However, its CO2 capture capacity decreases immediately after the first cycle. This regeneration problem is due to the formation of the by-product [KAl(CO3)(OH)2] during CO2 sorption. To overcome this problem, a new regenerable potassium-based sorbent was fabricated by CO2 thermal treatment of sorbents prepared by the impregnation of δ-alumina with K2CO3 in the presence of 10 vol% CO2 and 10 vol% H2O. The CO2 capture capacities of the new regenerable sorbents were maintained over multiple CO2 sorption tests. These results can be explained by the fact that the sorbent prepared by CO2 thermal treatment did not form any by-product during CO2 sorption. Based on these results, we suggest that the regeneration properties of potassium-based sorbents using δ-alumina could be significantly improved by the use of the CO2 thermal treatment developed in this study.  相似文献   

15.
The purpose of this research was to study steam gasification of ash‐free coal integrated with CO2 capture in the presence of a K2O catalyst for enhancement of the key water‐gas shift reaction and promotion of hydrogen production. To achieve this goal, gasification experiments on ash‐free coal (AFC) were carried out at varying temperatures (600, 650, 675, 700, and 750 °C) with a sorbent‐to‐carbon (CaO/C) ratio of 2 and a catalyst (K2O) loading of 0.2 g/g (20 weight percent (wt%)) in a fixed‐bed reactor equipped with a gas chromatography analyzer. The sorbent‐to‐carbon (CaO/C) ratio of 2 is based on dry and ash‐free basis. The CaO/C ratio and K2O wt% were chosen to maximize hydrogen production based on our previously determined optimal values. The AFC was originally extracted from raw lignite coal using organic solvents, which allowed the sorption‐enhanced gasification to be conducted with minimal ash‐catalyst interactions. The effect of temperature on the yield and the initial reaction rate were investigated. The optimal reaction temperature of 675 °C was determined. Carbon balance and final carbon conversions were calculated based on the residue analysis. Activation energy was also calculated using intrinsic kinetics of the reaction. In this study, using AFC offered the potential advantage of operating the gasification process with catalyst recycle.  相似文献   

16.
A 2D CFD simulation of the carbonation reactor is carried out to evaluate the performance of potassium‐based dry sorbent during the CO2 capture process. A multiscale drag coefficient model is incorporated into the two‐fluid model to take the effects of clusters into account. The influence of several parameters on CO2 removal is investigated. The results indicate that increasing the reactor height and reducing the gas velocity can lengthen the residence time of particles and enhance the CO2 removal. The operating pressure has a significant influence on the performance of solid sorbents. A higher pressure will decrease the CO2 removal efficiency.  相似文献   

17.
The steam gasification of biomass, in the presence of a calcium oxide (CaO) sorbent for carbon dioxide (CO2) capture, is a promising pathway for the renewable and sustainable production of hydrogen (H2). In this work, we demonstrate the potential of using a CaO sorbent to enhance hydrogen output from biomass gasifiers. In addition, we show that CaO materials are the most suitable sorbents reported in the literature for in situ CO2 capture. A further advantage of the coupled gasification-CO2 capture process is the production of a concentrated stream of CO2 as a byproduct. The integration of CO2 sequestration technology with H2 production from biomass could potentially result in the net removal of CO2 from the atmosphere.Maximum experimental H2 concentrations reported for the steam gasification of biomass, without CO2 capture, range between 40%-vol and 50%-vol. When CaO is used to remove CO2 from the product gas, as soon as it is formed, we predict an increase in the H2 concentrations from 40%-vol to 80%-vol (dry basis), based on thermodynamic modelling and previously published data.We examine the effect of key variables, with a specific focus on obtaining fundamental data relevant to the design and scale-up of novel biomass reactors. These include: (i) reaction temperature, (ii) pressure, (iii) steam-to-biomass ratio, (iv) residence time, and (v) CO2 sorbent loading. We report on operational challenges related to in situ CO2 capture using CaO-based sorbents. These include: (i) sorbent durability, (ii) limits to the maximum achievable conversion and (iii) decay in reactivity through multiple capture and release cycles. Strategies for enhancing the multicycle reactivity of CaO are reviewed, including: (i) optimized calcination conditions, and (ii) sorbent hydration procedures for reactivation of spent CaO. However, no CaO-based CO2 sorbent, with demonstrated high reactivity, maintained through multiple CO2 capture and release cycles, has been identified in the literature. Thus, we argue that the development of a CO2 sorbent, which is resistant to physical deterioration and maintains high chemical reactivity through multiple CO2 capture and release cycles, is the limiting step in the scale-up and commercial operation of the coupled gasification-CO2 capture process.  相似文献   

18.
The effect of CO2 or steam partial pressure in the regeneration of CO2 solid sorbents was studied in the two-interconnected bubbling fluidized-beds system. Potassium-based dry solid sorbents, which consisted of 35 wt% K2CO3 for CO2 sorption and 65 wt% supporters for mechanical strength, were used. To investigate the CO2 capture efficiency of the regenerated sorbent after the saturated sorbent was regenerated according to the CO2 or steam partial pressure in the regeneration, the mole percentage of CO2 in the regeneration gas was varied from 0 to 50 vol% with N2 balance and that of steam was varied from 0 to 100 vol% with N2 balance, respectively. The CO2 capture efficiency for each experimental condition was investigated for one hour steady-state operation with continuous solid circulation between a carbonator and a regenerator. The CO2 capture efficiency decreased as the partial pressure of CO2 in the fluidization gas of the regenerator increased, while it increased as that of steam increased. When 100 vol% of steam was used as the fluidization gas of the regenerator, the CO2 capture efficiency reached up to 97% and the recovered CO2 concentration in the regenerator was around 95 vol%. Those results were verified during 10-hour continuous experiment.  相似文献   

19.
In order to reduce the sorbent preparation cost and improve its volume‐based sorption capacity, the use of an inexpensive and commercially available silica gel was explored as a support to prepare a solid polyethylenimine sorbent (PEI/SG) for CO2 capture from flue gas. The effects of the pore volume and particle size of the silica gels, molecular weight of polyethylenimine and amount of polyethylenimine loaded, sorption temperature and moisture in the flue gas on the CO2 sorption capacity of PEI/SG were examined. The sorption performance of the developed PEI/SG was evaluated by using a thermogravimetric analyzer and a fixed‐bed flow sorption system in comparison with the SBA‐15‐supported polyethylenimine sorbent (PEI/SBA‐15). The best PEI/SG sorbent showed a mass‐based CO2 sorption capacity of 138 mg‐CO2/g‐sorbent, which is almost the same as that of PEI/SBA‐15. In addition, the PEI/SG gave a high volume‐based sorption capacity of 83 mg‐CO2/cm3‐sorbent, which is higher than that of PEI/SBA‐15 by a factor of 2.6. © 2011 American Institute of Chemical Engineers AIChE J, 58: 2495–2502, 2012  相似文献   

20.
Calcium looping processes for capturing CO2 from large emissions sources are based on the use of CaO particles as sorbent in circulating fluidized‐bed (CFB) reactors. A continuous flow of CaO from an oxyfired calciner is fed into the carbonator and a certain inventory of active CaO is expected to capture the CO2 in the flue gas. The circulation rate and the inventory of CaO determine the CO2 capture efficiency. Other parameters such as the average carrying capacity of the CaO circulating particles, the temperature, and the gas velocity must be taken into account. To investigate the effect of these variables on CO2 capture efficiency, we used a 6.5 m height CFB carbonator connected to a twin CFB calciner. Many stationary operating states were achieved using different operating conditions. The trends of CO2 capture efficiency measured are compared with those from a simple reactor model. This information may contribute to the future scaling up of the technology. © 2010 American Institute of Chemical Engineers AIChE J, 57: 000–000, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号